ProPLIKS: Probablistic 3D human body pose estimation
- URL: http://arxiv.org/abs/2412.04665v1
- Date: Thu, 05 Dec 2024 23:21:05 GMT
- Title: ProPLIKS: Probablistic 3D human body pose estimation
- Authors: Karthik Shetty, Annette Birkhold, Bernhard Egger, Srikrishna Jaganathan, Norbert Strobel, Markus Kowarschik, Andreas Maier,
- Abstract summary: We present a novel approach for 3D human pose estimation by employing probabilistic modeling.
Specifically, our method employs normalizing flow tailored to the SO(3) rotational group, incorporating a coupling mechanism based on the M"obius transformation.
We also reinterpret the challenge of reconstructing 3D human figures from 2D pixel-aligned inputs as the task of mapping these inputs to a range of probable poses.
- Score: 7.397323069796547
- License:
- Abstract: We present a novel approach for 3D human pose estimation by employing probabilistic modeling. This approach leverages the advantages of normalizing flows in non-Euclidean geometries to address uncertain poses. Specifically, our method employs normalizing flow tailored to the SO(3) rotational group, incorporating a coupling mechanism based on the M\"obius transformation. This enables the framework to accurately represent any distribution on SO(3), effectively addressing issues related to discontinuities. Additionally, we reinterpret the challenge of reconstructing 3D human figures from 2D pixel-aligned inputs as the task of mapping these inputs to a range of probable poses. This perspective acknowledges the intrinsic ambiguity of the task and facilitates a straightforward integration method for multi-view scenarios. The combination of these strategies showcases the effectiveness of probabilistic models in complex scenarios for human pose estimation techniques. Our approach notably surpasses existing methods in the field of pose estimation. We also validate our methodology on human pose estimation from RGB images as well as medical X-Ray datasets.
Related papers
- CondiMen: Conditional Multi-Person Mesh Recovery [0.0]
We propose CondiMen, a method that outputs a joint parametric distribution over likely poses, body shapes, intrinsics and distances to the camera.
We find that our model achieves performance on par with or better than the state-of-the-art.
arXiv Detail & Related papers (2024-12-17T16:22:56Z) - UPose3D: Uncertainty-Aware 3D Human Pose Estimation with Cross-View and Temporal Cues [55.69339788566899]
UPose3D is a novel approach for multi-view 3D human pose estimation.
It improves robustness and flexibility without requiring direct 3D annotations.
arXiv Detail & Related papers (2024-04-23T00:18:00Z) - A generic diffusion-based approach for 3D human pose prediction in the
wild [68.00961210467479]
3D human pose forecasting, i.e., predicting a sequence of future human 3D poses given a sequence of past observed ones, is a challenging-temporal task.
We provide a unified formulation in which incomplete elements (no matter in the prediction or observation) are treated as noise and propose a conditional diffusion model that denoises them and forecasts plausible poses.
We investigate our findings on four standard datasets and obtain significant improvements over the state-of-the-art.
arXiv Detail & Related papers (2022-10-11T17:59:54Z) - Uncertainty-Aware Adaptation for Self-Supervised 3D Human Pose
Estimation [70.32536356351706]
We introduce MRP-Net that constitutes a common deep network backbone with two output heads subscribing to two diverse configurations.
We derive suitable measures to quantify prediction uncertainty at both pose and joint level.
We present a comprehensive evaluation of the proposed approach and demonstrate state-of-the-art performance on benchmark datasets.
arXiv Detail & Related papers (2022-03-29T07:14:58Z) - Probabilistic Modeling for Human Mesh Recovery [73.11532990173441]
This paper focuses on the problem of 3D human reconstruction from 2D evidence.
We recast the problem as learning a mapping from the input to a distribution of plausible 3D poses.
arXiv Detail & Related papers (2021-08-26T17:55:11Z) - Implicit-PDF: Non-Parametric Representation of Probability Distributions
on the Rotation Manifold [47.31074799708132]
We introduce a method to estimate arbitrary, non-parametric distributions on SO(3).
Our key idea is to represent the distributions implicitly, with a neural network that estimates the probability given the input image and a candidate pose.
We achieve state-of-the-art performance on Pascal3D+ and ModelNet10-SO(3) benchmarks.
arXiv Detail & Related papers (2021-06-10T17:57:23Z) - 3D Multi-bodies: Fitting Sets of Plausible 3D Human Models to Ambiguous
Image Data [77.57798334776353]
We consider the problem of obtaining dense 3D reconstructions of humans from single and partially occluded views.
We suggest that ambiguities can be modelled more effectively by parametrizing the possible body shapes and poses.
We show that our method outperforms alternative approaches in ambiguous pose recovery on standard benchmarks for 3D humans.
arXiv Detail & Related papers (2020-11-02T13:55:31Z) - Multi-person 3D Pose Estimation in Crowded Scenes Based on Multi-View
Geometry [62.29762409558553]
Epipolar constraints are at the core of feature matching and depth estimation in multi-person 3D human pose estimation methods.
Despite the satisfactory performance of this formulation in sparser crowd scenes, its effectiveness is frequently challenged under denser crowd circumstances.
In this paper, we depart from the multi-person 3D pose estimation formulation, and instead reformulate it as crowd pose estimation.
arXiv Detail & Related papers (2020-07-21T17:59:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.