DAWN-SI: Data-Aware and Noise-Informed Stochastic Interpolation for Solving Inverse Problems
- URL: http://arxiv.org/abs/2412.04766v1
- Date: Fri, 06 Dec 2024 04:18:49 GMT
- Title: DAWN-SI: Data-Aware and Noise-Informed Stochastic Interpolation for Solving Inverse Problems
- Authors: Shadab Ahamed, Eldad Haber,
- Abstract summary: Inverse problems, which involve estimating parameters from incomplete or noisy observations, arise in various fields such as medical imaging, geophysics, and signal processing.
In this work, we employ $textitStochastic Interpolation$ (SI), a framework that integrates both deterministic and processes to map a simple reference distribution.
Our approach is trained specifically for each inverse problem and adapts to varying noise levels.
- Score: 4.212663349859165
- License:
- Abstract: Inverse problems, which involve estimating parameters from incomplete or noisy observations, arise in various fields such as medical imaging, geophysics, and signal processing. These problems are often ill-posed, requiring regularization techniques to stabilize the solution. In this work, we employ $\textit{Stochastic Interpolation}$ (SI), a generative framework that integrates both deterministic and stochastic processes to map a simple reference distribution, such as a Gaussian, to the target distribution. Our method $\textbf{DAWN-SI}$: $\textbf{D}$ata-$\textbf{AW}$are and $\textbf{N}$oise-informed $\textbf{S}$tochastic $\textbf{I}$nterpolation incorporates data and noise embedding, allowing the model to access representations about the measured data explicitly and also account for noise in the observations, making it particularly robust in scenarios where data is noisy or incomplete. By learning a time-dependent velocity field, SI not only provides accurate solutions but also enables uncertainty quantification by generating multiple plausible outcomes. Unlike pre-trained diffusion models, which may struggle in highly ill-posed settings, our approach is trained specifically for each inverse problem and adapts to varying noise levels. We validate the effectiveness and robustness of our method through extensive numerical experiments on tasks such as image deblurring and tomography.
Related papers
- Accelerated zero-order SGD under high-order smoothness and overparameterized regime [79.85163929026146]
We present a novel gradient-free algorithm to solve convex optimization problems.
Such problems are encountered in medicine, physics, and machine learning.
We provide convergence guarantees for the proposed algorithm under both types of noise.
arXiv Detail & Related papers (2024-11-21T10:26:17Z) - Inferring biological processes with intrinsic noise from cross-sectional data [0.8192907805418583]
Inferring dynamical models from data continues to be a significant challenge in computational biology.
We show that probability flow inference (PFI) disentangles force from intrinsicity while retaining the algorithmic ease of ODE inference.
In practical applications, we show that PFI enables accurate parameter and force estimation in high-dimensional reaction networks, and that it allows inference of cell differentiation dynamics with molecular noise.
arXiv Detail & Related papers (2024-10-10T00:33:25Z) - Spatially-Aware Diffusion Models with Cross-Attention for Global Field Reconstruction with Sparse Observations [1.371691382573869]
We develop and enhance score-based diffusion models in field reconstruction tasks.
We introduce a condition encoding approach to construct a tractable mapping mapping between observed and unobserved regions.
We demonstrate the ability of the model to capture possible reconstructions and improve the accuracy of fused results.
arXiv Detail & Related papers (2024-08-30T19:46:23Z) - Learning with Noisy Foundation Models [95.50968225050012]
This paper is the first work to comprehensively understand and analyze the nature of noise in pre-training datasets.
We propose a tuning method (NMTune) to affine the feature space to mitigate the malignant effect of noise and improve generalization.
arXiv Detail & Related papers (2024-03-11T16:22:41Z) - Towards stable real-world equation discovery with assessing
differentiating quality influence [52.2980614912553]
We propose alternatives to the commonly used finite differences-based method.
We evaluate these methods in terms of applicability to problems, similar to the real ones, and their ability to ensure the convergence of equation discovery algorithms.
arXiv Detail & Related papers (2023-11-09T23:32:06Z) - Score-based Diffusion Models in Function Space [137.70916238028306]
Diffusion models have recently emerged as a powerful framework for generative modeling.
This work introduces a mathematically rigorous framework called Denoising Diffusion Operators (DDOs) for training diffusion models in function space.
We show that the corresponding discretized algorithm generates accurate samples at a fixed cost independent of the data resolution.
arXiv Detail & Related papers (2023-02-14T23:50:53Z) - The Optimal Noise in Noise-Contrastive Learning Is Not What You Think [80.07065346699005]
We show that deviating from this assumption can actually lead to better statistical estimators.
In particular, the optimal noise distribution is different from the data's and even from a different family.
arXiv Detail & Related papers (2022-03-02T13:59:20Z) - Multiview point cloud registration with anisotropic and space-varying
localization noise [1.5499426028105903]
We address the problem of registering multiple point clouds corrupted with high anisotropic localization noise.
Existing methods are based on an implicit assumption of space-invariant isotropic noise.
We show that our noise handling strategy improves significantly the robustness to high levels of anisotropic noise.
arXiv Detail & Related papers (2022-01-03T15:21:24Z) - Automatic Differentiation to Simultaneously Identify Nonlinear Dynamics
and Extract Noise Probability Distributions from Data [4.996878640124385]
SINDy is a framework for the discovery of parsimonious dynamic models and equations from time-series data.
We develop a variant of the SINDy algorithm that integrates automatic differentiation and recent time-stepping constrained by Rudy et al.
We show the method can identify a diversity of probability distributions including Gaussian, uniform, Gamma, and Rayleigh.
arXiv Detail & Related papers (2020-09-12T23:52:25Z) - Learning while Respecting Privacy and Robustness to Distributional
Uncertainties and Adversarial Data [66.78671826743884]
The distributionally robust optimization framework is considered for training a parametric model.
The objective is to endow the trained model with robustness against adversarially manipulated input data.
Proposed algorithms offer robustness with little overhead.
arXiv Detail & Related papers (2020-07-07T18:25:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.