MozzaVID: Mozzarella Volumetric Image Dataset
- URL: http://arxiv.org/abs/2412.04880v1
- Date: Fri, 06 Dec 2024 09:23:31 GMT
- Title: MozzaVID: Mozzarella Volumetric Image Dataset
- Authors: Pawel Tomasz Pieta, Peter Winkel Rasmussen, Anders Bjorholm Dahl, Jeppe Revall Frisvad, Siavash Arjomand Bigdeli, Carsten Gundlach, Anders Nymark Christensen,
- Abstract summary: MozzaVID is a large, clean, and versatile volumetric classification dataset.
It contains X-ray computed tomography (CT) images of mozzarella microstructure.
We provide data in three different resolutions, resulting in three dataset instances containing from 591 to 37,824 images.
- Score: 4.626777879371501
- License:
- Abstract: Influenced by the complexity of volumetric imaging, there is a shortage of established datasets useful for benchmarking volumetric deep-learning models. As a consequence, new and existing models are not easily comparable, limiting the development of architectures optimized specifically for volumetric data. To counteract this trend, we introduce MozzaVID - a large, clean, and versatile volumetric classification dataset. Our dataset contains X-ray computed tomography (CT) images of mozzarella microstructure and enables the classification of 25 cheese types and 149 cheese samples. We provide data in three different resolutions, resulting in three dataset instances containing from 591 to 37,824 images. While being general-purpose, the dataset also facilitates investigating mozzarella structure properties. The structure of food directly affects its functional properties and thus its consumption experience. Understanding food structure helps tune the production and mimicking it enables sustainable alternatives to animal-derived food products. The complex and disordered nature of food structures brings a unique challenge, where a choice of appropriate imaging method, scale, and sample size is not trivial. With this dataset we aim to address these complexities, contributing to more robust structural analysis models. The dataset can be downloaded from: https://archive.compute.dtu.dk/files/public/projects/MozzaVID/.
Related papers
- Experimentation in Content Moderation using RWKV [0.7499722271664147]
This paper investigates the RWKV model's efficacy in content moderation through targeted experimentation.
We introduce a novel dataset specifically designed for distillation into smaller models.
We generated an extensive set of responses -- 558,958 for text and 83,625 for images -- to train and refine content moderation systems.
arXiv Detail & Related papers (2024-09-05T23:17:18Z) - MetaFood3D: 3D Food Dataset with Nutrition Values [52.16894900096017]
This dataset consists of 743 meticulously scanned and labeled 3D food objects across 131 categories.
Our MetaFood3D dataset emphasizes intra-class diversity and includes rich modalities such as textured mesh files, RGB-D videos, and segmentation masks.
arXiv Detail & Related papers (2024-09-03T15:02:52Z) - Foodfusion: A Novel Approach for Food Image Composition via Diffusion Models [48.821150379374714]
We introduce a large-scale, high-quality food image composite dataset, FC22k, which comprises 22,000 foreground, background, and ground truth ternary image pairs.
We propose a novel food image composition method, Foodfusion, which incorporates a Fusion Module for processing and integrating foreground and background information.
arXiv Detail & Related papers (2024-08-26T09:32:16Z) - MegaScenes: Scene-Level View Synthesis at Scale [69.21293001231993]
Scene-level novel view synthesis (NVS) is fundamental to many vision and graphics applications.
We create a large-scale scene-level dataset from Internet photo collections, called MegaScenes, which contains over 100K structure from motion (SfM) reconstructions from around the world.
We analyze failure cases of state-of-the-art NVS methods and significantly improve generation consistency.
arXiv Detail & Related papers (2024-06-17T17:55:55Z) - A Generative Machine Learning Model for Material Microstructure 3D
Reconstruction and Performance Evaluation [4.169915659794567]
The dimensional extension from 2D to 3D is viewed as a highly challenging inverse problem from the current technological perspective.
A novel generative model that integrates the multiscale properties of U-net with and the generative capabilities of GAN has been proposed.
The model's accuracy is further improved by combining the image regularization loss with the Wasserstein distance loss.
arXiv Detail & Related papers (2024-02-24T13:42:34Z) - Diffusion Model with Clustering-based Conditioning for Food Image
Generation [22.154182296023404]
Deep learning-based techniques are commonly used to perform image analysis such as food classification, segmentation, and portion size estimation.
One potential solution is to use synthetic food images for data augmentation.
In this paper, we propose an effective clustering-based training framework, named ClusDiff, for generating high-quality and representative food images.
arXiv Detail & Related papers (2023-09-01T01:40:39Z) - TASTEset -- Recipe Dataset and Food Entities Recognition Benchmark [1.0569625612398386]
NER models are expected to find or infer various types of entities helpful in processing recipes.
The dataset consists of 700 recipes with more than 13,000 entities to extract.
We provide a few state-of-the-art baselines of named entity recognition models, which show that our dataset poses a solid challenge to existing models.
arXiv Detail & Related papers (2022-04-16T10:52:21Z) - A Large-Scale Benchmark for Food Image Segmentation [62.28029856051079]
We build a new food image dataset FoodSeg103 (and its extension FoodSeg154) containing 9,490 images.
We annotate these images with 154 ingredient classes and each image has an average of 6 ingredient labels and pixel-wise masks.
We propose a multi-modality pre-training approach called ReLeM that explicitly equips a segmentation model with rich and semantic food knowledge.
arXiv Detail & Related papers (2021-05-12T03:00:07Z) - Learning Feature Aggregation for Deep 3D Morphable Models [57.1266963015401]
We propose an attention based module to learn mapping matrices for better feature aggregation across hierarchical levels.
Our experiments show that through the end-to-end training of the mapping matrices, we achieve state-of-the-art results on a variety of 3D shape datasets.
arXiv Detail & Related papers (2021-05-05T16:41:00Z) - Counting dense objects in remote sensing images [52.182698295053264]
Estimating number of interested objects from a given image is a challenging yet important task.
In this paper, we are interested in counting dense objects from remote sensing images.
To address these issues, we first construct a large-scale object counting dataset based on remote sensing images.
We then benchmark the dataset by designing a novel neural network which can generate density map of an input image.
arXiv Detail & Related papers (2020-02-14T09:13:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.