Dirac-Equation Signal Processing: Physics Boosts Topological Machine Learning
- URL: http://arxiv.org/abs/2412.05132v1
- Date: Fri, 06 Dec 2024 15:38:58 GMT
- Title: Dirac-Equation Signal Processing: Physics Boosts Topological Machine Learning
- Authors: Runyue Wang, Yu Tian, Pietro LiĆ², Ginestra Bianconi,
- Abstract summary: Topological signals are variables or features associated with both nodes and edges of a network.
We propose Dirac-equation signal processing, a framework for efficiently reconstructing true signals on nodes and edges.
We show that Dirac-equation signal processing can also be used efficiently if the true signal is a non-trivial linear combination of more than one eigenstate of the Dirac equation.
- Score: 18.57778340331936
- License:
- Abstract: Topological signals are variables or features associated with both nodes and edges of a network. Recently, in the context of Topological Machine Learning, great attention has been devoted to signal processing of such topological signals. Most of the previous topological signal processing algorithms treat node and edge signals separately and work under the hypothesis that the true signal is smooth and/or well approximated by a harmonic eigenvector of the Hodge-Laplacian, which may be violated in practice. Here we propose Dirac-equation signal processing, a framework for efficiently reconstructing true signals on nodes and edges, also if they are not smooth or harmonic, by processing them jointly. The proposed physics-inspired algorithm is based on the spectral properties of the topological Dirac operator. It leverages the mathematical structure of the topological Dirac equation to boost the performance of the signal processing algorithm. We discuss how the relativistic dispersion relation obeyed by the topological Dirac equation can be used to assess the quality of the signal reconstruction. Finally, we demonstrate the improved performance of the algorithm with respect to previous algorithms. Specifically, we show that Dirac-equation signal processing can also be used efficiently if the true signal is a non-trivial linear combination of more than one eigenstate of the Dirac equation, as it generally occurs for real signals.
Related papers
- Graph Neural Networks for Edge Signals: Orientation Equivariance and Invariance [50.277959544420455]
We develop EIGN, an architecture composed of novel direction-aware edge-level graph shift operators.
EIGN outperforms prior work in edge-level tasks, for example, improving in RMSE on flow simulation tasks by up to 43.5%.
arXiv Detail & Related papers (2024-10-22T12:12:43Z) - Learning signals defined on graphs with optimal transport and Gaussian process regression [1.1062090350704616]
In computational physics, machine learning has emerged as a powerful complementary tool to explore efficiently candidate designs in engineering studies.
We propose an innovative strategy for Gaussian process regression where inputs are large and sparse graphs with continuous node attributes and outputs are signals defined on the nodes of the associated inputs.
In addition to enabling signal prediction, the main point of our proposal is to come with confidence intervals on node values, which is crucial for uncertainty and active learning.
arXiv Detail & Related papers (2024-10-21T07:39:44Z) - Implicit Neural Representations and the Algebra of Complex Wavelets [36.311212480600794]
Implicit neural representations (INRs) have arisen as useful methods for representing signals on Euclidean domains.
By parameterizing an image as a multilayer perceptron (MLP) on Euclidean space, INRs effectively represent signals in a way that couples and spectral features of the signal that is not obvious in the usual discrete representation.
arXiv Detail & Related papers (2023-10-01T02:01:28Z) - Optimal Algorithms for the Inhomogeneous Spiked Wigner Model [89.1371983413931]
We derive an approximate message-passing algorithm (AMP) for the inhomogeneous problem.
We identify in particular the existence of a statistical-to-computational gap where known algorithms require a signal-to-noise ratio bigger than the information-theoretic threshold to perform better than random.
arXiv Detail & Related papers (2023-02-13T19:57:17Z) - Dirac signal processing of higher-order topological signals [5.70896453969985]
We propose an adaptive, unsupervised signal processing algorithm that learns to jointly filter topological signals supported on nodes, links and triangles.
We test our algorithms on noisy synthetic data and noisy data of drifters in the ocean.
arXiv Detail & Related papers (2023-01-12T13:53:27Z) - Low-complexity Near-optimum Symbol Detection Based on Neural Enhancement
of Factor Graphs [2.030567625639093]
We consider the application of the factor graph framework for symbol detection on linear inter-symbol interference channels.
We develop and evaluate strategies to improve the performance of the factor graph-based symbol detection by means of neural enhancement.
arXiv Detail & Related papers (2022-03-30T15:58:53Z) - Deep Equilibrium Assisted Block Sparse Coding of Inter-dependent
Signals: Application to Hyperspectral Imaging [71.57324258813675]
A dataset of inter-dependent signals is defined as a matrix whose columns demonstrate strong dependencies.
A neural network is employed to act as structure prior and reveal the underlying signal interdependencies.
Deep unrolling and Deep equilibrium based algorithms are developed, forming highly interpretable and concise deep-learning-based architectures.
arXiv Detail & Related papers (2022-03-29T21:00:39Z) - Graph Signal Restoration Using Nested Deep Algorithm Unrolling [85.53158261016331]
Graph signal processing is a ubiquitous task in many applications such as sensor, social transportation brain networks, point cloud processing, and graph networks.
We propose two restoration methods based on convexindependent deep ADMM (ADMM)
parameters in the proposed restoration methods are trainable in an end-to-end manner.
arXiv Detail & Related papers (2021-06-30T08:57:01Z) - Joint Network Topology Inference via Structured Fusion Regularization [70.30364652829164]
Joint network topology inference represents a canonical problem of learning multiple graph Laplacian matrices from heterogeneous graph signals.
We propose a general graph estimator based on a novel structured fusion regularization.
We show that the proposed graph estimator enjoys both high computational efficiency and rigorous theoretical guarantee.
arXiv Detail & Related papers (2021-03-05T04:42:32Z) - Activation Relaxation: A Local Dynamical Approximation to
Backpropagation in the Brain [62.997667081978825]
Activation Relaxation (AR) is motivated by constructing the backpropagation gradient as the equilibrium point of a dynamical system.
Our algorithm converges rapidly and robustly to the correct backpropagation gradients, requires only a single type of computational unit, and can operate on arbitrary computation graphs.
arXiv Detail & Related papers (2020-09-11T11:56:34Z) - Neighborhood and Graph Constructions using Non-Negative Kernel
Regression [42.16401154367232]
We present an alternative view of neighborhood selection, where we show that neighborhood construction is equivalent to a sparse signal approximation problem.
We also propose an algorithm, non-negative kernel regression(NNK), for obtaining neighborhoods that lead to better sparse representation.
arXiv Detail & Related papers (2019-10-21T13:58:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.