DNF: Unconditional 4D Generation with Dictionary-based Neural Fields
- URL: http://arxiv.org/abs/2412.05161v1
- Date: Fri, 06 Dec 2024 16:25:57 GMT
- Title: DNF: Unconditional 4D Generation with Dictionary-based Neural Fields
- Authors: Xinyi Zhang, Naiqi Li, Angela Dai,
- Abstract summary: We propose DNF, a new 4D representation for unconditional generative modeling.
D DNF efficiently models deformable shapes with disentangled shape and motion.
Our method is able to generate effective, high-fidelity 4D animations.
- Score: 32.25164913000621
- License:
- Abstract: While remarkable success has been achieved through diffusion-based 3D generative models for shapes, 4D generative modeling remains challenging due to the complexity of object deformations over time. We propose DNF, a new 4D representation for unconditional generative modeling that efficiently models deformable shapes with disentangled shape and motion while capturing high-fidelity details in the deforming objects. To achieve this, we propose a dictionary learning approach to disentangle 4D motion from shape as neural fields. Both shape and motion are represented as learned latent spaces, where each deformable shape is represented by its shape and motion global latent codes, shape-specific coefficient vectors, and shared dictionary information. This captures both shape-specific detail and global shared information in the learned dictionary. Our dictionary-based representation well balances fidelity, contiguity and compression -- combined with a transformer-based diffusion model, our method is able to generate effective, high-fidelity 4D animations.
Related papers
- NeuSDFusion: A Spatial-Aware Generative Model for 3D Shape Completion, Reconstruction, and Generation [52.772319840580074]
3D shape generation aims to produce innovative 3D content adhering to specific conditions and constraints.
Existing methods often decompose 3D shapes into a sequence of localized components, treating each element in isolation.
We introduce a novel spatial-aware 3D shape generation framework that leverages 2D plane representations for enhanced 3D shape modeling.
arXiv Detail & Related papers (2024-03-27T04:09:34Z) - Beyond Skeletons: Integrative Latent Mapping for Coherent 4D Sequence Generation [48.671462912294594]
We propose a novel framework that generates coherent 4D sequences with animation of 3D shapes under given conditions.
We first employ an integrative latent unified representation to encode shape and color information of each detailed 3D geometry frame.
The proposed skeleton-free latent 4D sequence joint representation allows us to leverage diffusion models in a low-dimensional space to control the generation of 4D sequences.
arXiv Detail & Related papers (2024-03-20T01:59:43Z) - Hybrid Neural Diffeomorphic Flow for Shape Representation and Generation
via Triplane [16.684276798449115]
HNDF is a method that implicitly learns the underlying representation and decomposes intricate dense correspondences into explicitly axis-aligned triplane features.
Unlike conventional approaches that directly generate new 3D shapes, we explore the idea of shape generation with deformed template shape via diffeomorphic flows.
arXiv Detail & Related papers (2023-07-04T23:28:01Z) - Michelangelo: Conditional 3D Shape Generation based on Shape-Image-Text
Aligned Latent Representation [47.945556996219295]
We present a novel alignment-before-generation approach to generate 3D shapes based on 2D images or texts.
Our framework comprises two models: a Shape-Image-Text-Aligned Variational Auto-Encoder (SITA-VAE) and a conditional Aligned Shape Latent Diffusion Model (ASLDM)
arXiv Detail & Related papers (2023-06-29T17:17:57Z) - LoRD: Local 4D Implicit Representation for High-Fidelity Dynamic Human
Modeling [69.56581851211841]
We propose a novel Local 4D implicit Representation for Dynamic clothed human, named LoRD.
Our key insight is to encourage the network to learn the latent codes of local part-level representation.
LoRD has strong capability for representing 4D human, and outperforms state-of-the-art methods on practical applications.
arXiv Detail & Related papers (2022-08-18T03:49:44Z) - Disentangled3D: Learning a 3D Generative Model with Disentangled
Geometry and Appearance from Monocular Images [94.49117671450531]
State-of-the-art 3D generative models are GANs which use neural 3D volumetric representations for synthesis.
In this paper, we design a 3D GAN which can learn a disentangled model of objects, just from monocular observations.
arXiv Detail & Related papers (2022-03-29T22:03:18Z) - Identity-Disentangled Neural Deformation Model for Dynamic Meshes [8.826835863410109]
We learn a neural deformation model that disentangles identity-induced shape variations from pose-dependent deformations using implicit neural functions.
We propose two methods to integrate global pose alignment with our neural deformation model.
Our method also outperforms traditional skeleton-driven models in reconstructing surface details such as palm prints or tendons without limitations from a fixed template.
arXiv Detail & Related papers (2021-09-30T17:43:06Z) - Learning Canonical 3D Object Representation for Fine-Grained Recognition [77.33501114409036]
We propose a novel framework for fine-grained object recognition that learns to recover object variation in 3D space from a single image.
We represent an object as a composition of 3D shape and its appearance, while eliminating the effect of camera viewpoint.
By incorporating 3D shape and appearance jointly in a deep representation, our method learns the discriminative representation of the object.
arXiv Detail & Related papers (2021-08-10T12:19:34Z) - Deep Implicit Templates for 3D Shape Representation [70.9789507686618]
We propose a new 3D shape representation that supports explicit correspondence reasoning in deep implicit representations.
Our key idea is to formulate DIFs as conditional deformations of a template implicit function.
We show that our method can not only learn a common implicit template for a collection of shapes, but also establish dense correspondences across all the shapes simultaneously without any supervision.
arXiv Detail & Related papers (2020-11-30T06:01:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.