$ρ$-NeRF: Leveraging Attenuation Priors in Neural Radiance Field for 3D Computed Tomography Reconstruction
- URL: http://arxiv.org/abs/2412.05322v1
- Date: Tue, 03 Dec 2024 21:06:26 GMT
- Title: $ρ$-NeRF: Leveraging Attenuation Priors in Neural Radiance Field for 3D Computed Tomography Reconstruction
- Authors: Li Zhou, Changsheng Fang, Bahareh Morovati, Yongtong Liu, Shuo Han, Yongshun Xu, Hengyong Yu,
- Abstract summary: $rho$-NeRF sets a new standard in novel view synthesis (NVS) and computed tomography (CT) reconstruction.
The $rho$-NeRF represents a three-dimensional (3D) volume through a fully-connected neural network.
- Score: 4.829520688270679
- License:
- Abstract: This paper introduces $\rho$-NeRF, a self-supervised approach that sets a new standard in novel view synthesis (NVS) and computed tomography (CT) reconstruction by modeling a continuous volumetric radiance field enriched with physics-based attenuation priors. The $\rho$-NeRF represents a three-dimensional (3D) volume through a fully-connected neural network that takes a single continuous four-dimensional (4D) coordinate, spatial location $(x, y, z)$ and an initialized attenuation value ($\rho$), and outputs the attenuation coefficient at that position. By querying these 4D coordinates along X-ray paths, the classic forward projection technique is applied to integrate attenuation data across the 3D space. By matching and refining pre-initialized attenuation values derived from traditional reconstruction algorithms like Feldkamp-Davis-Kress algorithm (FDK) or conjugate gradient least squares (CGLS), the enriched schema delivers superior fidelity in both projection synthesis and image recognition.
Related papers
- R$^2$-Gaussian: Rectifying Radiative Gaussian Splatting for Tomographic Reconstruction [53.19869886963333]
3D Gaussian splatting (3DGS) has shown promising results in rendering image and surface reconstruction.
This paper introduces R2$-Gaussian, the first 3DGS-based framework for sparse-view tomographic reconstruction.
arXiv Detail & Related papers (2024-05-31T08:39:02Z) - Distributed Stochastic Optimization of a Neural Representation Network for Time-Space Tomography Reconstruction [4.689071714940848]
4D time-space reconstruction of dynamic events or deforming objects using Xray computed tomography (CT) is an extremely ill-posed inverse problem.
Existing approaches assume that the object remains static for the duration of several tens or hundreds of X-ray projection measurement images.
We propose to perform a 4D time-space reconstruction using a distributed implicit neural representation network that is trained using a novel distributed training algorithm.
arXiv Detail & Related papers (2024-04-29T19:41:51Z) - Gaussian Opacity Fields: Efficient Adaptive Surface Reconstruction in Unbounded Scenes [50.92217884840301]
Gaussian Opacity Fields (GOF) is a novel approach for efficient, high-quality, and adaptive surface reconstruction in scenes.
GOF is derived from ray-tracing-based volume rendering of 3D Gaussians.
GOF surpasses existing 3DGS-based methods in surface reconstruction and novel view synthesis.
arXiv Detail & Related papers (2024-04-16T17:57:19Z) - GaSpCT: Gaussian Splatting for Novel CT Projection View Synthesis [0.6990493129893112]
GaSpCT is a novel view synthesis and 3D scene representation method used to generate novel projection views for Computer Tomography (CT) scans.
We adapt the Gaussian Splatting framework to enable novel view synthesis in CT based on limited sets of 2D image projections.
We evaluate the performance of our model using brain CT scans from the Parkinson's Progression Markers Initiative (PPMI) dataset.
arXiv Detail & Related papers (2024-04-04T00:28:50Z) - NEAT: Distilling 3D Wireframes from Neural Attraction Fields [52.90572335390092]
This paper studies the problem of structured lineframe junctions using 3D reconstruction segments andFocusing junctions.
ProjectNEAT enjoys the joint neural fields and view without crossart matching from scratch.
arXiv Detail & Related papers (2023-07-14T07:25:47Z) - Learning Neural Radiance Fields from Multi-View Geometry [1.1011268090482573]
We present a framework, called MVG-NeRF, that combines Multi-View Geometry algorithms and Neural Radiance Fields (NeRF) for image-based 3D reconstruction.
NeRF has revolutionized the field of implicit 3D representations, mainly due to a differentiable rendering formulation that enables high-quality and geometry-aware novel view synthesis.
arXiv Detail & Related papers (2022-10-24T08:53:35Z) - Orthogonal Matrix Retrieval with Spatial Consensus for 3D Unknown-View
Tomography [58.60249163402822]
Unknown-view tomography (UVT) reconstructs a 3D density map from its 2D projections at unknown, random orientations.
The proposed OMR is more robust and performs significantly better than the previous state-of-the-art OMR approach.
arXiv Detail & Related papers (2022-07-06T21:40:59Z) - Optical Diffraction Tomography based on 3D Physics-Inspired Neural
Network (PINN) [0.1310865248866973]
Optical diffraction tomography (ODT) is an emerging 3D imaging technique that is used for the 3D reconstruction of the refractive index (RI) for semi-transparent samples.
Various inverse models have been proposed to reconstruct the 3D RI based on the holographic detection of different samples such as the Born and the Rytov approximations.
We propose a different approach where a 3D neural network (NN) is employed. The NN is trained with a cost function derived from a physical model based on the physics of optical wave propagation.
arXiv Detail & Related papers (2022-06-10T17:19:04Z) - PREF: Phasorial Embedding Fields for Compact Neural Representations [54.44527545923917]
We present a phasorial embedding field emphPREF as a compact representation to facilitate neural signal modeling and reconstruction tasks.
Our experiments show PREF-based neural signal processing technique is on par with the state-of-the-art in 2D image completion, 3D SDF surface regression, and 5D radiance field reconstruction.
arXiv Detail & Related papers (2022-05-26T17:43:03Z) - BNV-Fusion: Dense 3D Reconstruction using Bi-level Neural Volume Fusion [85.24673400250671]
We present Bi-level Neural Volume Fusion (BNV-Fusion), which leverages recent advances in neural implicit representations and neural rendering for dense 3D reconstruction.
In order to incrementally integrate new depth maps into a global neural implicit representation, we propose a novel bi-level fusion strategy.
We evaluate the proposed method on multiple datasets quantitatively and qualitatively, demonstrating a significant improvement over existing methods.
arXiv Detail & Related papers (2022-04-03T19:33:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.