DRL4AOI: A DRL Framework for Semantic-aware AOI Segmentation in Location-Based Services
- URL: http://arxiv.org/abs/2412.05437v1
- Date: Fri, 06 Dec 2024 21:45:27 GMT
- Title: DRL4AOI: A DRL Framework for Semantic-aware AOI Segmentation in Location-Based Services
- Authors: Youfang Lin, Jinji Fu, Haomin Wen, Jiyuan Wang, Zhenjie Wei, Yuting Qiang, Xiaowei Mao, Lixia Wu, Haoyuan Hu, Yuxuan Liang, Huaiyu Wan,
- Abstract summary: A fundamental task is segmenting Areas of Interest (AOIs) in Location-Based Services (LBS)
In this paper, we present a novel DRL-based framework called DRL4AOI.
We also present a representative implementation of DRL4AOI for AOI segmentation in the logistics service.
- Score: 30.648182879899434
- License:
- Abstract: In Location-Based Services (LBS), such as food delivery, a fundamental task is segmenting Areas of Interest (AOIs), aiming at partitioning the urban geographical spaces into non-overlapping regions. Traditional AOI segmentation algorithms primarily rely on road networks to partition urban areas. While promising in modeling the geo-semantics, road network-based models overlooked the service-semantic goals (e.g., workload equality) in LBS service. In this paper, we point out that the AOI segmentation problem can be naturally formulated as a Markov Decision Process (MDP), which gradually chooses a nearby AOI for each grid in the current AOI's border. Based on the MDP, we present the first attempt to generalize Deep Reinforcement Learning (DRL) for AOI segmentation, leading to a novel DRL-based framework called DRL4AOI. The DRL4AOI framework introduces different service-semantic goals in a flexible way by treating them as rewards that guide the AOI generation. To evaluate the effectiveness of DRL4AOI, we develop and release an AOI segmentation system. We also present a representative implementation of DRL4AOI - TrajRL4AOI - for AOI segmentation in the logistics service. It introduces a Double Deep Q-learning Network (DDQN) to gradually optimize the AOI generation for two specific semantic goals: i) trajectory modularity, i.e., maximize tightness of the trajectory connections within an AOI and the sparsity of connections between AOIs, ii) matchness with the road network, i.e., maximizing the matchness between AOIs and the road network. Quantitative and qualitative experiments conducted on synthetic and real-world data demonstrate the effectiveness and superiority of our method. The code and system is publicly available at https://github.com/Kogler7/AoiOpt.
Related papers
- FusionLLM: A Decentralized LLM Training System on Geo-distributed GPUs with Adaptive Compression [55.992528247880685]
Decentralized training faces significant challenges regarding system design and efficiency.
We present FusionLLM, a decentralized training system designed and implemented for training large deep neural networks (DNNs)
We show that our system and method can achieve 1.45 - 9.39x speedup compared to baseline methods while ensuring convergence.
arXiv Detail & Related papers (2024-10-16T16:13:19Z) - Multimodal Urban Areas of Interest Generation via Remote Sensing Imagery
and Geographical Prior [9.85003064364004]
Urban area-of-interest (AOI) refers to an integrated urban functional zone with defined polygonal boundaries.
We propose a comprehensive end-to-end multimodal deep learning framework designed for simultaneously detecting accurate AOI boundaries and validating the reliability of AOI.
arXiv Detail & Related papers (2024-01-12T12:54:30Z) - Adaptive Hierarchical SpatioTemporal Network for Traffic Forecasting [70.66710698485745]
We propose an Adaptive Hierarchical SpatioTemporal Network (AHSTN) to promote traffic forecasting.
AHSTN exploits the spatial hierarchy and modeling multi-scale spatial correlations.
Experiments on two real-world datasets show that AHSTN achieves better performance over several strong baselines.
arXiv Detail & Related papers (2023-06-15T14:50:27Z) - Bidirectional Generative Framework for Cross-domain Aspect-based
Sentiment Analysis [68.742820522137]
Cross-domain aspect-based sentiment analysis (ABSA) aims to perform various fine-grained sentiment analysis tasks on a target domain by transferring knowledge from a source domain.
We propose a unified bidirectional generative framework to tackle various cross-domain ABSA tasks.
Our framework trains a generative model in both text-to-label and label-to-text directions.
arXiv Detail & Related papers (2023-05-16T15:02:23Z) - Area of interest adaption using feature importance [1.4469849628263638]
We present two approaches and algorithms that adapt areas of interest (AOI) or regions of interest (ROI) to the eye tracking data quality and classification task.
The first approach uses feature importance in a greedy way and grows or shrinks AOIs in all directions.
The second approach is an extension of the first approach, which divides the AOIs into areas and calculates a direction of growth.
arXiv Detail & Related papers (2023-03-03T07:49:10Z) - Olive Branch Learning: A Topology-Aware Federated Learning Framework for
Space-Air-Ground Integrated Network [19.059950250921926]
Training AI models centrally with the assistance of SAGIN faces the challenges of highly constrained network topology, inefficient data transmission, and privacy issues.
We first propose a novel topology-aware federated learning framework for the SAGIN, namely Olive Branch Learning (OBL)
We extend our OBL framework and CNASA algorithm to adapt to more complex multi-orbit satellite networks.
arXiv Detail & Related papers (2022-12-02T14:51:42Z) - Self-Ensembling GAN for Cross-Domain Semantic Segmentation [107.27377745720243]
This paper proposes a self-ensembling generative adversarial network (SE-GAN) exploiting cross-domain data for semantic segmentation.
In SE-GAN, a teacher network and a student network constitute a self-ensembling model for generating semantic segmentation maps, which together with a discriminator, forms a GAN.
Despite its simplicity, we find SE-GAN can significantly boost the performance of adversarial training and enhance the stability of the model.
arXiv Detail & Related papers (2021-12-15T09:50:25Z) - ENERO: Efficient Real-Time Routing Optimization [2.830334160074889]
Traffic Engineering (TE) solutions must be able to achieve high performance real-time network operation.
Current TE technologies rely on hand-crafteds or computationally expensive solvers.
We propose Enero, an efficient real-time TE engine.
arXiv Detail & Related papers (2021-09-22T17:53:30Z) - Stagewise Unsupervised Domain Adaptation with Adversarial Self-Training
for Road Segmentation of Remote Sensing Images [93.50240389540252]
Road segmentation from remote sensing images is a challenging task with wide ranges of application potentials.
We propose a novel stagewise domain adaptation model called RoadDA to address the domain shift (DS) issue in this field.
Experiment results on two benchmarks demonstrate that RoadDA can efficiently reduce the domain gap and outperforms state-of-the-art methods.
arXiv Detail & Related papers (2021-08-28T09:29:14Z) - On Topology Optimization and Routing in Integrated Access and Backhaul
Networks: A Genetic Algorithm-based Approach [70.85399600288737]
We study the problem of topology optimization and routing in IAB networks.
We develop efficient genetic algorithm-based schemes for both IAB node placement and non-IAB backhaul link distribution.
We discuss the main challenges for enabling mesh-based IAB networks.
arXiv Detail & Related papers (2021-02-14T21:52:05Z) - Continual Unsupervised Domain Adaptation for Semantic Segmentation [14.160280479726921]
Unsupervised Domain Adaptation (UDA) for semantic segmentation has been favorably applied to real-world scenarios in which pixel-level labels are hard to be obtained.
We propose Continual UDA for semantic segmentation based on a newly designed Expanding Target-specific Memory (ETM) framework.
Our novel ETM framework contains Target-specific Memory (TM) for each target domain to alleviate catastrophic forgetting.
arXiv Detail & Related papers (2020-10-19T05:59:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.