RefSAM3D: Adapting SAM with Cross-modal Reference for 3D Medical Image Segmentation
- URL: http://arxiv.org/abs/2412.05605v1
- Date: Sat, 07 Dec 2024 10:22:46 GMT
- Title: RefSAM3D: Adapting SAM with Cross-modal Reference for 3D Medical Image Segmentation
- Authors: Xiang Gao, Kai Lu,
- Abstract summary: The Segment Anything Model (SAM) excels at capturing global patterns in 2D natural images but struggles with 3D medical imaging modalities like CT and MRI.
We introduce RefSAM3D, which adapts SAM for 3D medical imaging by incorporating a 3D image adapter and cross-modal reference prompt generation.
Our contributions advance the application of SAM in accurately segmenting complex anatomical structures in medical imaging.
- Score: 17.69664156349825
- License:
- Abstract: The Segment Anything Model (SAM), originally built on a 2D Vision Transformer (ViT), excels at capturing global patterns in 2D natural images but struggles with 3D medical imaging modalities like CT and MRI. These modalities require capturing spatial information in volumetric space for tasks such as organ segmentation and tumor quantification. To address this challenge, we introduce RefSAM3D, which adapts SAM for 3D medical imaging by incorporating a 3D image adapter and cross-modal reference prompt generation. Our approach modifies the visual encoder to handle 3D inputs and enhances the mask decoder for direct 3D mask generation. We also integrate textual prompts to improve segmentation accuracy and consistency in complex anatomical scenarios. By employing a hierarchical attention mechanism, our model effectively captures and integrates information across different scales. Extensive evaluations on multiple medical imaging datasets demonstrate the superior performance of RefSAM3D over state-of-the-art methods. Our contributions advance the application of SAM in accurately segmenting complex anatomical structures in medical imaging.
Related papers
- Self-Prompt SAM: Medical Image Segmentation via Automatic Prompt SAM Adaptation [14.821036063099458]
Segment Anything Model (SAM) has demonstrated impressive zero-shot performance.
We propose a novel self-prompt SAM adaptation framework for medical image segmentation, named Self-Prompt-SAM.
Our method achieves state-of-the-art performance and outperforms nnUNet by 2.3% on AMOS2022, 1.6% on ACDCand 0.5% on Synapse datasets.
arXiv Detail & Related papers (2025-02-02T02:42:24Z) - Autoregressive Sequence Modeling for 3D Medical Image Representation [48.706230961589924]
We introduce a pioneering method for learning 3D medical image representations through an autoregressive sequence pre-training framework.
Our approach various 3D medical images based on spatial, contrast, and semantic correlations, treating them as interconnected visual tokens within a token sequence.
arXiv Detail & Related papers (2024-09-13T10:19:10Z) - SAM3D: Zero-Shot Semi-Automatic Segmentation in 3D Medical Images with the Segment Anything Model [3.2554912675000818]
We introduce SAM3D, a new approach to semi-automatic zero-shot segmentation of 3D images building on the existing Segment Anything Model.
We achieve fast and accurate segmentations in 3D images with a four-step strategy involving: user prompting with 3D polylines, volume slicing along multiple axes, slice-wide inference with a pretrained model, and recomposition and refinement in 3D.
arXiv Detail & Related papers (2024-05-10T19:26:17Z) - Towards a Comprehensive, Efficient and Promptable Anatomic Structure Segmentation Model using 3D Whole-body CT Scans [23.573958232965104]
Segment anything model (SAM) demonstrates strong generalization ability on natural image segmentation.
We propose a comprehensive and scalable 3D SAM model for whole-body CT segmentation, named CT-SAM3D.
CT-SAM3D is trained using a curated dataset of 1204 CT scans containing 107 whole-body anatomies.
arXiv Detail & Related papers (2024-03-22T09:40:52Z) - Generative Enhancement for 3D Medical Images [74.17066529847546]
We propose GEM-3D, a novel generative approach to the synthesis of 3D medical images.
Our method begins with a 2D slice, noted as the informed slice to serve the patient prior, and propagates the generation process using a 3D segmentation mask.
By decomposing the 3D medical images into masks and patient prior information, GEM-3D offers a flexible yet effective solution for generating versatile 3D images.
arXiv Detail & Related papers (2024-03-19T15:57:04Z) - SDR-Former: A Siamese Dual-Resolution Transformer for Liver Lesion
Classification Using 3D Multi-Phase Imaging [59.78761085714715]
This study proposes a novel Siamese Dual-Resolution Transformer (SDR-Former) framework for liver lesion classification.
The proposed framework has been validated through comprehensive experiments on two clinical datasets.
To support the scientific community, we are releasing our extensive multi-phase MR dataset for liver lesion analysis to the public.
arXiv Detail & Related papers (2024-02-27T06:32:56Z) - MinD-3D: Reconstruct High-quality 3D objects in Human Brain [50.534007259536715]
Recon3DMind is an innovative task aimed at reconstructing 3D visuals from Functional Magnetic Resonance Imaging (fMRI) signals.
We present the fMRI-Shape dataset, which includes data from 14 participants and features 360-degree videos of 3D objects.
We propose MinD-3D, a novel and effective three-stage framework specifically designed to decode the brain's 3D visual information from fMRI signals.
arXiv Detail & Related papers (2023-12-12T18:21:36Z) - SAM-Med3D: Towards General-purpose Segmentation Models for Volumetric Medical Images [35.83393121891959]
We introduce SAM-Med3D for general-purpose segmentation on volumetric medical images.
SAM-Med3D can accurately segment diverse anatomical structures and lesions across various modalities.
Our approach demonstrates that substantial medical resources can be utilized to develop a general-purpose medical AI.
arXiv Detail & Related papers (2023-10-23T17:57:36Z) - MA-SAM: Modality-agnostic SAM Adaptation for 3D Medical Image
Segmentation [58.53672866662472]
We introduce a modality-agnostic SAM adaptation framework, named as MA-SAM.
Our method roots in the parameter-efficient fine-tuning strategy to update only a small portion of weight increments.
By injecting a series of 3D adapters into the transformer blocks of the image encoder, our method enables the pre-trained 2D backbone to extract third-dimensional information from input data.
arXiv Detail & Related papers (2023-09-16T02:41:53Z) - SAM3D: Segment Anything Model in Volumetric Medical Images [11.764867415789901]
We introduce SAM3D, an innovative adaptation tailored for 3D volumetric medical image analysis.
Unlike current SAM-based methods that segment volumetric data by converting the volume into separate 2D slices for individual analysis, our SAM3D model processes the entire 3D volume image in a unified approach.
arXiv Detail & Related papers (2023-09-07T06:05:28Z) - 3DSAM-adapter: Holistic adaptation of SAM from 2D to 3D for promptable tumor segmentation [52.699139151447945]
We propose a novel adaptation method for transferring the segment anything model (SAM) from 2D to 3D for promptable medical image segmentation.
Our model can outperform domain state-of-the-art medical image segmentation models on 3 out of 4 tasks, specifically by 8.25%, 29.87%, and 10.11% for kidney tumor, pancreas tumor, colon cancer segmentation, and achieve similar performance for liver tumor segmentation.
arXiv Detail & Related papers (2023-06-23T12:09:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.