Flow-based Detection of Botnets through Bio-inspired Optimisation of Machine Learning
- URL: http://arxiv.org/abs/2412.05688v3
- Date: Sun, 15 Dec 2024 13:58:10 GMT
- Title: Flow-based Detection of Botnets through Bio-inspired Optimisation of Machine Learning
- Authors: Biju Issac, Kyle Fryer, Seibu Mary Jacob,
- Abstract summary: Botnets could autonomously infect, propagate, communicate and coordinate with other members in the botnet.
Traditional detection methods are becoming increasingly unsuitable against various network-based detection evasion methods.
This research explores the application of network flow-based behavioural modelling to facilitate the binary classification of bot network activity.
- Score: 0.5735035463793009
- License:
- Abstract: Botnets could autonomously infect, propagate, communicate and coordinate with other members in the botnet, enabling cybercriminals to exploit the cumulative computing and bandwidth of its bots to facilitate cybercrime. Traditional detection methods are becoming increasingly unsuitable against various network-based detection evasion methods. These techniques ultimately render signature-based fingerprinting detection infeasible and thus this research explores the application of network flow-based behavioural modelling to facilitate the binary classification of bot network activity, whereby the detection is independent of underlying communications architectures, ports, protocols and payload-based detection evasion mechanisms. A comparative evaluation of various machine learning classification methods is conducted, to precisely determine the average accuracy of each classifier on bot datasets like CTU-13, ISOT 2010 and ISCX 2014. Additionally, hyperparameter tuning using Genetic Algorithm (GA), aiming to efficiently converge to the fittest hyperparameter set for each dataset was done. The bioinspired optimisation of Random Forest (RF) with GA achieved an average accuracy of 99.85% when it was tested against the three datasets. The model was then developed into a software product. The YouTube link of the project and demo of the software developed: https://youtu.be/gNQjC91VtOI
Related papers
- Comprehensive Botnet Detection by Mitigating Adversarial Attacks, Navigating the Subtleties of Perturbation Distances and Fortifying Predictions with Conformal Layers [1.6001193161043425]
Botnets are computer networks controlled by malicious actors that present significant cybersecurity challenges.
This research addresses the sophisticated adversarial manipulations posed by attackers, aiming to undermine machine learning-based botnet detection systems.
We introduce a flow-based detection approach, leveraging machine learning and deep learning algorithms trained on the ISCX and ISOT datasets.
arXiv Detail & Related papers (2024-09-01T08:53:21Z) - A Dependable Hybrid Machine Learning Model for Network Intrusion
Detection [1.222622290392729]
We propose a new hybrid model that combines machine learning and deep learning to increase detection rates while securing dependability.
Our method produces excellent results when tested on two datasets, KDDCUP'99 and CIC-MalMem-2022.
arXiv Detail & Related papers (2022-12-08T20:19:27Z) - BeCAPTCHA-Type: Biometric Keystroke Data Generation for Improved Bot
Detection [63.447493500066045]
This work proposes a data driven learning model for the synthesis of keystroke biometric data.
The proposed method is compared with two statistical approaches based on Universal and User-dependent models.
Our experimental framework considers a dataset with 136 million keystroke events from 168 thousand subjects.
arXiv Detail & Related papers (2022-07-27T09:26:15Z) - Improving Botnet Detection with Recurrent Neural Network and Transfer
Learning [5.602292536933117]
Botnet detection is a critical step in stopping the spread of botnets and preventing malicious activities.
Recent approaches employing machine learning (ML) showed improved performance than earlier ones.
We propose a novel botnet detection method, built upon Recurrent Variational Autoencoder (RVAE)
arXiv Detail & Related papers (2021-04-26T14:05:01Z) - A Novel Anomaly Detection Algorithm for Hybrid Production Systems based
on Deep Learning and Timed Automata [73.38551379469533]
DAD:DeepAnomalyDetection is a new approach for automatic model learning and anomaly detection in hybrid production systems.
It combines deep learning and timed automata for creating behavioral model from observations.
The algorithm has been applied to few data sets including two from real systems and has shown promising results.
arXiv Detail & Related papers (2020-10-29T08:27:43Z) - Deep Learning based Covert Attack Identification for Industrial Control
Systems [5.299113288020827]
We develop a data-driven framework that can be used to detect, diagnose, and localize a type of cyberattack called covert attacks on smart grids.
The framework has a hybrid design that combines an autoencoder, a recurrent neural network (RNN) with a Long-Short-Term-Memory layer, and a Deep Neural Network (DNN)
arXiv Detail & Related papers (2020-09-25T17:48:43Z) - Bayesian Optimization with Machine Learning Algorithms Towards Anomaly
Detection [66.05992706105224]
In this paper, an effective anomaly detection framework is proposed utilizing Bayesian Optimization technique.
The performance of the considered algorithms is evaluated using the ISCX 2012 dataset.
Experimental results show the effectiveness of the proposed framework in term of accuracy rate, precision, low-false alarm rate, and recall.
arXiv Detail & Related papers (2020-08-05T19:29:35Z) - Contextual-Bandit Anomaly Detection for IoT Data in Distributed
Hierarchical Edge Computing [65.78881372074983]
IoT devices can hardly afford complex deep neural networks (DNN) models, and offloading anomaly detection tasks to the cloud incurs long delay.
We propose and build a demo for an adaptive anomaly detection approach for distributed hierarchical edge computing (HEC) systems.
We show that our proposed approach significantly reduces detection delay without sacrificing accuracy, as compared to offloading detection tasks to the cloud.
arXiv Detail & Related papers (2020-04-15T06:13:33Z) - Botnet Detection Using Recurrent Variational Autoencoder [4.486436314247216]
Botnets are increasingly used by malicious actors, creating increasing threat to a large number of internet users.
We propose a novel machine learning based method, named Recurrent Variational Autoencoder (RVAE), for detecting botnets.
Tests show RVAE is able to detect botnets with the same accuracy as the best known results published in literature.
arXiv Detail & Related papers (2020-04-01T05:03:34Z) - Automating Botnet Detection with Graph Neural Networks [106.24877728212546]
Botnets are now a major source for many network attacks, such as DDoS attacks and spam.
In this paper, we consider the neural network design challenges of using modern deep learning techniques to learn policies for botnet detection automatically.
arXiv Detail & Related papers (2020-03-13T15:34:33Z) - Adaptive Anomaly Detection for IoT Data in Hierarchical Edge Computing [71.86955275376604]
We propose an adaptive anomaly detection approach for hierarchical edge computing (HEC) systems to solve this problem.
We design an adaptive scheme to select one of the models based on the contextual information extracted from input data, to perform anomaly detection.
We evaluate our proposed approach using a real IoT dataset, and demonstrate that it reduces detection delay by 84% while maintaining almost the same accuracy as compared to offloading detection tasks to the cloud.
arXiv Detail & Related papers (2020-01-10T05:29:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.