Quantum delayed "choice" based on vectorially structured photon
- URL: http://arxiv.org/abs/2412.05847v1
- Date: Sun, 08 Dec 2024 08:03:21 GMT
- Title: Quantum delayed "choice" based on vectorially structured photon
- Authors: Ye Yang, Shuya Zhang, Yongkun Zhou, Xinji Zeng, Kaixuan Ren, Dong Wei, Chengyuan Wang, Yun Chen, Hong Gao, Fuli Li,
- Abstract summary: We propose a novel version of the quantum delayed choice (QDC) experiment by tailoring the quantum state of the single photon into an arbitrary polarization superposition.
We observe the morphing behaviour of the single photon between wavelike and particlelike characteristics, which challenges the classical picture of waves and particles.
- Score: 5.9881204514827395
- License:
- Abstract: Whether a photon exhibits wavelike or particlelike behaviour depends on the observation method, as clearly demonstrated by Wheeler's delayed choice (DC) experiments. A key aspect of such experiments is the random determination of the observation device's status, typically controlled by a random number generator or a quantum-controlling apparatus. Here, we propose a novel version of the quantum delayed choice (QDC) experiment by tailoring the quantum state of the single photon into an arbitrary polarization superposition. In this experiment, the "choice" can be considered as being made by the photon's state itself at the moment of observation, thereby violating classical causality. Additionally, we observe the morphing behaviour of the single photon between wavelike and particlelike characteristics, which challenges the classical picture of waves and particles. Utilizing the quantum state of the photon rather than the quantum-controlling devices not only facilitates the implementation of the QDC experiment but also helps deepen the understanding of Bohr's complementarity principle.
Related papers
- Entangled in Spacetime [0.0]
The Delayed-Choice Quantum Eraser demonstrates the relationship between quantum measurement, wave-particle duality, and the temporal ordering of observations.
By utilizing the principles of quantum superposition, entanglement, and the non-local collapse of the wave function, we seek to rationalize the counterintuitive outcomes observed in the experiment.
arXiv Detail & Related papers (2024-09-04T00:57:23Z) - Entanglement of annihilation photons [141.5628276096321]
We present the results of a new experimental study of the quantum entanglement of photon pairs produced in positron-electron annihilation at rest.
Despite numerous measurements, there is still no experimental proof of the entanglement of photons.
arXiv Detail & Related papers (2022-10-14T08:21:55Z) - A macroscopic delayed-choice quantum eraser using a commercial laser [0.0]
In quantum mechanics, quantum superposition is represented by probability amplitudes between mutually exclusive natures.
The delayed-choice quantum eraser is for the post-determination of the photon nature.
The macroscopic delayed-choice quantum eraser is experimentally demonstrated using a continuous wave laser.
arXiv Detail & Related papers (2022-05-28T06:45:13Z) - Coherence interpretation of the delayed-choice quantum eraser [12.507208769851653]
We experimentally demonstrate the violation of the cause-effect relation using coherent photons for the quantum eraser.
The observed quantum eraser is coherently interpreted to seek the origin of the cause-effect violation.
arXiv Detail & Related papers (2022-02-13T00:28:22Z) - Modified quantum delayed-choice experiment without quantum control [11.368391424104123]
Wheeler's delayed-choice experiment delays the decision to observe either the wave or particle behavior of a photon until after it has entered the interferometer.
We here propose a modified quantum delayed-choice experiment without quantum control or entanglement assistance.
arXiv Detail & Related papers (2021-02-23T09:01:14Z) - Single photon randomness originating from the symmetry of dipole
emission and the unpredictability of spontaneous emission [55.41644538483948]
Quantum random number generation is a key ingredient for quantum cryptography and fundamental quantum optics.
We experimentally demonstrate quantum random number generation based on the spontaneous emission process.
The scheme can be extended to random number generation by coherent single photons with potential applications in solid-state based quantum communication at room temperature.
arXiv Detail & Related papers (2021-02-18T14:07:20Z) - Classical model of delayed-choice quantum eraser [0.0]
Wheeler's delayed-choice experiment was conceived to illustrate the paradoxical nature of wave-particle duality in quantum mechanics.
In the experiment, quantum light can exhibit either wave-like interference patterns or particle-like anti-correlations.
A variant known as the quantum eraser uses entangled light to recover the lost interference in a seemingly nonlocal and retrocausal manner.
arXiv Detail & Related papers (2021-01-09T14:47:28Z) - Quantum time dilation in atomic spectra [62.997667081978825]
We demonstrate how quantum time dilation manifests in a spontaneous emission process.
The resulting emission rate differs when compared to the emission rate of an atom prepared in a mixture of momentum wave packets.
We argue that spectroscopic experiments offer a technologically feasible platform to explore the effects of quantum time dilation.
arXiv Detail & Related papers (2020-06-17T18:03:38Z) - Quantum Hall phase emerging in an array of atoms interacting with
photons [101.18253437732933]
Topological quantum phases underpin many concepts of modern physics.
Here, we reveal that the quantum Hall phase with topological edge states, spectral Landau levels and Hofstadter butterfly can emerge in a simple quantum system.
Such systems, arrays of two-level atoms (qubits) coupled to light being described by the classical Dicke model, have recently been realized in experiments with cold atoms and superconducting qubits.
arXiv Detail & Related papers (2020-03-18T14:56:39Z) - Probing the Universality of Topological Defect Formation in a Quantum
Annealer: Kibble-Zurek Mechanism and Beyond [46.39654665163597]
We report on experimental tests of topological defect formation via the one-dimensional transverse-field Ising model.
We find that the quantum simulator results can indeed be explained by the KZM for open-system quantum dynamics with phase-flip errors.
This implies that the theoretical predictions of the generalized KZM theory, which assumes isolation from the environment, applies beyond its original scope to an open system.
arXiv Detail & Related papers (2020-01-31T02:55:35Z) - Quantum Random Number Generation using a Solid-State Single-Photon
Source [89.24951036534168]
Quantum random number generation (QRNG) harnesses the intrinsic randomness of quantum mechanical phenomena.
We demonstrate QRNG with a quantum emitter in hexagonal boron nitride.
Our results open a new avenue to the fabrication of on-chip deterministic random number generators.
arXiv Detail & Related papers (2020-01-28T22:47:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.