Understanding the Impact of Graph Reduction on Adversarial Robustness in Graph Neural Networks
- URL: http://arxiv.org/abs/2412.05883v1
- Date: Sun, 08 Dec 2024 10:22:23 GMT
- Title: Understanding the Impact of Graph Reduction on Adversarial Robustness in Graph Neural Networks
- Authors: Kerui Wu, Ka-Ho Chow, Wenqi Wei, Lei Yu,
- Abstract summary: Graph Neural Networks (GNNs) are increasingly popular for learning from large-scale graph data.
We present an empirical study to investigate the impact of graph reduction techniques, specifically graph coarsening and sparsification, on the robustness of GNNs against adversarial attacks.
- Score: 13.014096424911283
- License:
- Abstract: As Graph Neural Networks (GNNs) become increasingly popular for learning from large-scale graph data across various domains, their susceptibility to adversarial attacks when using graph reduction techniques for scalability remains underexplored. In this paper, we present an extensive empirical study to investigate the impact of graph reduction techniques, specifically graph coarsening and sparsification, on the robustness of GNNs against adversarial attacks. Through extensive experiments involving multiple datasets and GNN architectures, we examine the effects of four sparsification and six coarsening methods on the poisoning attacks. Our results indicate that, while graph sparsification can mitigate the effectiveness of certain poisoning attacks, such as Mettack, it has limited impact on others, like PGD. Conversely, graph coarsening tends to amplify the adversarial impact, significantly reducing classification accuracy as the reduction ratio decreases. Additionally, we provide a novel analysis of the causes driving these effects and examine how defensive GNN models perform under graph reduction, offering practical insights for designing robust GNNs within graph acceleration systems.
Related papers
- Explainable Malware Detection through Integrated Graph Reduction and Learning Techniques [2.464148828287322]
Control Flow Graphs and Function Call Graphs have become pivotal in providing a detailed understanding of program execution.
These graph-based representations, when combined with Graph Neural Networks (GNN), have shown promise in developing high-performance malware detectors.
This paper addresses these issues by developing several graph reduction techniques to reduce graph size and applying the state-of-the-art GNNExplainer to enhance the interpretability of GNN outputs.
arXiv Detail & Related papers (2024-12-04T18:59:45Z) - On the Robustness of Graph Reduction Against GNN Backdoor [9.377257547233919]
Graph Neural Networks (GNNs) are gaining popularity across various domains due to their effectiveness in learning graph-structured data.
backdoor poisoning attacks pose serious threats to real-world applications.
graph reduction techniques, including coarsening and sparsification, have emerged as effective methods for accelerating GNN training on large-scale graphs.
arXiv Detail & Related papers (2024-07-02T17:08:38Z) - GraphCloak: Safeguarding Task-specific Knowledge within Graph-structured Data from Unauthorized Exploitation [61.80017550099027]
Graph Neural Networks (GNNs) are increasingly prevalent in a variety of fields.
Growing concerns have emerged regarding the unauthorized utilization of personal data.
Recent studies have shown that imperceptible poisoning attacks are an effective method of protecting image data from such misuse.
This paper introduces GraphCloak to safeguard against the unauthorized usage of graph data.
arXiv Detail & Related papers (2023-10-11T00:50:55Z) - Everything Perturbed All at Once: Enabling Differentiable Graph Attacks [61.61327182050706]
Graph neural networks (GNNs) have been shown to be vulnerable to adversarial attacks.
We propose a novel attack method called Differentiable Graph Attack (DGA) to efficiently generate effective attacks.
Compared to the state-of-the-art, DGA achieves nearly equivalent attack performance with 6 times less training time and 11 times smaller GPU memory footprint.
arXiv Detail & Related papers (2023-08-29T20:14:42Z) - Resisting Graph Adversarial Attack via Cooperative Homophilous
Augmentation [60.50994154879244]
Recent studies show that Graph Neural Networks are vulnerable and easily fooled by small perturbations.
In this work, we focus on the emerging but critical attack, namely, Graph Injection Attack.
We propose a general defense framework CHAGNN against GIA through cooperative homophilous augmentation of graph data and model.
arXiv Detail & Related papers (2022-11-15T11:44:31Z) - Exploring High-Order Structure for Robust Graph Structure Learning [33.62223306095631]
Graph Neural Networks (GNNs) are vulnerable to adversarial attack, i.e., an imperceptible structure perturbation can fool GNNs to make wrong predictions.
In this paper, we analyze the adversarial attack on graphs from the perspective of feature smoothness.
We propose a novel algorithm that incorporates the high-order structural information into the graph structure learning.
arXiv Detail & Related papers (2022-03-22T07:03:08Z) - Jointly Attacking Graph Neural Network and its Explanations [50.231829335996814]
Graph Neural Networks (GNNs) have boosted the performance for many graph-related tasks.
Recent studies have shown that GNNs are highly vulnerable to adversarial attacks, where adversaries can mislead the GNNs' prediction by modifying graphs.
We propose a novel attack framework (GEAttack) which can attack both a GNN model and its explanations by simultaneously exploiting their vulnerabilities.
arXiv Detail & Related papers (2021-08-07T07:44:33Z) - Information Obfuscation of Graph Neural Networks [96.8421624921384]
We study the problem of protecting sensitive attributes by information obfuscation when learning with graph structured data.
We propose a framework to locally filter out pre-determined sensitive attributes via adversarial training with the total variation and the Wasserstein distance.
arXiv Detail & Related papers (2020-09-28T17:55:04Z) - Graph Structure Learning for Robust Graph Neural Networks [63.04935468644495]
Graph Neural Networks (GNNs) are powerful tools in representation learning for graphs.
Recent studies show that GNNs are vulnerable to carefully-crafted perturbations, called adversarial attacks.
We propose a general framework Pro-GNN, which can jointly learn a structural graph and a robust graph neural network model.
arXiv Detail & Related papers (2020-05-20T17:07:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.