New Additive OCBA Procedures for Robust Ranking and Selection
- URL: http://arxiv.org/abs/2412.06020v2
- Date: Sat, 18 Jan 2025 18:40:32 GMT
- Title: New Additive OCBA Procedures for Robust Ranking and Selection
- Authors: Yuchen Wan, Zaile Li, L. Jeff Hong,
- Abstract summary: We develop new fixed-budget robust R&S procedures to minimize the probability of incorrect selection under a limited sampling budget.
We then conduct a comprehensive numerical study to verify the superiority of our robust OCBA procedure over existing ones.
- Score: 0.9558392439655016
- License:
- Abstract: Robust ranking and selection (R&S) is an important and challenging variation of conventional R&S that seeks to select the best alternative among a finite set of alternatives. It captures the common input uncertainty in the simulation model by using an ambiguity set to include multiple possible input distributions and shifts to select the best alternative with the smallest worst-case mean performance over the ambiguity set. In this paper, we aim at developing new fixed-budget robust R&S procedures to minimize the probability of incorrect selection (PICS) under a limited sampling budget. Inspired by an additive upper bound of the PICS, we derive a new asymptotically optimal solution to the budget allocation problem. Accordingly, we design a new sequential optimal computing budget allocation (OCBA) procedure to solve robust R&S problems efficiently. We then conduct a comprehensive numerical study to verify the superiority of our robust OCBA procedure over existing ones. The numerical study also provides insights on the budget allocation behaviors that lead to enhanced efficiency.
Related papers
- An Efficient Approach for Solving Expensive Constrained Multiobjective Optimization Problems [0.0]
An efficient probabilistic selection based constrained multi-objective EA is proposed, referred to as PSCMOEA.
It comprises novel elements such as (a) an adaptive search bound identification scheme based on the feasibility and convergence status of evaluated solutions.
Numerical experiments are conducted on an extensive range of challenging constrained problems using low evaluation budgets to simulate ECMOPs.
arXiv Detail & Related papers (2024-05-22T02:32:58Z) - EERO: Early Exit with Reject Option for Efficient Classification with
limited budget [0.0]
We propose EERO, a new methodology to translate the problem of early exiting to a problem of using multiple classifiers with reject option.
We calibrate the probabilities of exiting at the different heads using aggregation with exponential weights to guarantee a fixed budget.
Experimental results, conducted using a ResNet-18 model and a ConvNext architecture on Cifar and ImageNet datasets, demonstrate that our method not only effectively manages budget allocation but also enhances accuracy in overthinking scenarios.
arXiv Detail & Related papers (2024-02-06T07:50:27Z) - Model-Based Epistemic Variance of Values for Risk-Aware Policy Optimization [59.758009422067]
We consider the problem of quantifying uncertainty over expected cumulative rewards in model-based reinforcement learning.
We propose a new uncertainty Bellman equation (UBE) whose solution converges to the true posterior variance over values.
We introduce a general-purpose policy optimization algorithm, Q-Uncertainty Soft Actor-Critic (QU-SAC) that can be applied for either risk-seeking or risk-averse policy optimization.
arXiv Detail & Related papers (2023-12-07T15:55:58Z) - Best Arm Identification for Stochastic Rising Bandits [84.55453174601826]
Rising Bandits (SRBs) model sequential decision-making problems in which the expected reward of the available options increases every time they are selected.
This paper focuses on the fixed-budget Best Arm Identification (BAI) problem for SRBs.
We propose two algorithms to tackle the above-mentioned setting, namely R-UCBE and R-SR.
arXiv Detail & Related papers (2023-02-15T08:01:37Z) - RoMA: Robust Model Adaptation for Offline Model-based Optimization [115.02677045518692]
We consider the problem of searching an input maximizing a black-box objective function given a static dataset of input-output queries.
A popular approach to solving this problem is maintaining a proxy model that approximates the true objective function.
Here, the main challenge is how to avoid adversarially optimized inputs during the search.
arXiv Detail & Related papers (2021-10-27T05:37:12Z) - Outlier-Robust Sparse Estimation via Non-Convex Optimization [73.18654719887205]
We explore the connection between high-dimensional statistics and non-robust optimization in the presence of sparsity constraints.
We develop novel and simple optimization formulations for these problems.
As a corollary, we obtain that any first-order method that efficiently converges to station yields an efficient algorithm for these tasks.
arXiv Detail & Related papers (2021-09-23T17:38:24Z) - Momentum Accelerates the Convergence of Stochastic AUPRC Maximization [80.8226518642952]
We study optimization of areas under precision-recall curves (AUPRC), which is widely used for imbalanced tasks.
We develop novel momentum methods with a better iteration of $O (1/epsilon4)$ for finding an $epsilon$stationary solution.
We also design a novel family of adaptive methods with the same complexity of $O (1/epsilon4)$, which enjoy faster convergence in practice.
arXiv Detail & Related papers (2021-07-02T16:21:52Z) - Modeling the Second Player in Distributionally Robust Optimization [90.25995710696425]
We argue for the use of neural generative models to characterize the worst-case distribution.
This approach poses a number of implementation and optimization challenges.
We find that the proposed approach yields models that are more robust than comparable baselines.
arXiv Detail & Related papers (2021-03-18T14:26:26Z) - Simplified Swarm Optimization for Bi-Objection Active Reliability
Redundancy Allocation Problems [1.5990720051907859]
The reliability redundancy allocation problem (RRAP) is a well-known problem in system design, development, and management.
In this study, a bi-objective RRAP is formulated by changing the cost constraint as a new goal.
To solve the proposed problem, a new simplified swarm optimization (SSO) with a penalty function, a real one-type solution structure, a number-based self-adaptive new update mechanism, a constrained non-dominated solution selection, and a new pBest replacement policy is developed.
arXiv Detail & Related papers (2020-06-17T13:15:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.