Sound2Vision: Generating Diverse Visuals from Audio through Cross-Modal Latent Alignment
- URL: http://arxiv.org/abs/2412.06209v1
- Date: Mon, 09 Dec 2024 05:04:50 GMT
- Title: Sound2Vision: Generating Diverse Visuals from Audio through Cross-Modal Latent Alignment
- Authors: Kim Sung-Bin, Arda Senocak, Hyunwoo Ha, Tae-Hyun Oh,
- Abstract summary: We propose a method for generating images of visual scenes from diverse in-the-wild sounds.
This cross-modal generation task is challenging due to the significant information gap between auditory and visual signals.
- Score: 18.08290178587821
- License:
- Abstract: How does audio describe the world around us? In this work, we propose a method for generating images of visual scenes from diverse in-the-wild sounds. This cross-modal generation task is challenging due to the significant information gap between auditory and visual signals. We address this challenge by designing a model that aligns audio-visual modalities by enriching audio features with visual information and translating them into the visual latent space. These features are then fed into the pre-trained image generator to produce images. To enhance image quality, we use sound source localization to select audio-visual pairs with strong cross-modal correlations. Our method achieves substantially better results on the VEGAS and VGGSound datasets compared to previous work and demonstrates control over the generation process through simple manipulations to the input waveform or latent space. Furthermore, we analyze the geometric properties of the learned embedding space and demonstrate that our learning approach effectively aligns audio-visual signals for cross-modal generation. Based on this analysis, we show that our method is agnostic to specific design choices, showing its generalizability by integrating various model architectures and different types of audio-visual data.
Related papers
- Seeing and Hearing: Open-domain Visual-Audio Generation with Diffusion
Latent Aligners [69.70590867769408]
Video and audio content creation serves as the core technique for the movie industry and professional users.
Existing diffusion-based methods tackle video and audio generation separately, which hinders the technique transfer from academia to industry.
In this work, we aim at filling the gap, with a carefully designed optimization-based framework for cross-visual-audio and joint-visual-audio generation.
arXiv Detail & Related papers (2024-02-27T17:57:04Z) - Cooperative Dual Attention for Audio-Visual Speech Enhancement with
Facial Cues [80.53407593586411]
We focus on leveraging facial cues beyond the lip region for robust Audio-Visual Speech Enhancement (AVSE)
We propose a Dual Attention Cooperative Framework, DualAVSE, to ignore speech-unrelated information, capture speech-related information with facial cues, and dynamically integrate it with the audio signal for AVSE.
arXiv Detail & Related papers (2023-11-24T04:30:31Z) - Improving Audio-Visual Segmentation with Bidirectional Generation [40.78395709407226]
We introduce a bidirectional generation framework for audio-visual segmentation.
This framework establishes robust correlations between an object's visual characteristics and its associated sound.
We also introduce an implicit volumetric motion estimation module to handle temporal dynamics.
arXiv Detail & Related papers (2023-08-16T11:20:23Z) - Align, Adapt and Inject: Sound-guided Unified Image Generation [50.34667929051005]
We propose a unified framework 'Align, Adapt, and Inject' (AAI) for sound-guided image generation, editing, and stylization.
Our method adapts input sound into a sound token, like an ordinary word, which can plug and play with existing Text-to-Image (T2I) models.
Our proposed AAI outperforms other text and sound-guided state-of-the-art methods.
arXiv Detail & Related papers (2023-06-20T12:50:49Z) - Sound to Visual Scene Generation by Audio-to-Visual Latent Alignment [22.912401512161132]
We design a model that works by scheduling the learning procedure of each model component to associate audio-visual modalities.
We translate the input audio to visual features, then use a pre-trained generator to produce an image.
We obtain substantially better results on the VEGAS and VGGSound datasets than prior approaches.
arXiv Detail & Related papers (2023-03-30T16:01:50Z) - Sounding Video Generator: A Unified Framework for Text-guided Sounding
Video Generation [24.403772976932487]
Sounding Video Generator (SVG) is a unified framework for generating realistic videos along with audio signals.
VQGAN transforms visual frames and audio melspectrograms into discrete tokens.
Transformer-based decoder is used to model associations between texts, visual frames, and audio signals.
arXiv Detail & Related papers (2023-03-29T09:07:31Z) - Joint Learning of Visual-Audio Saliency Prediction and Sound Source
Localization on Multi-face Videos [101.83513408195692]
We propose a multitask learning method for visual-audio saliency prediction and sound source localization on multi-face video.
The proposed method outperforms 12 state-of-the-art saliency prediction methods, and achieves competitive results in sound source localization.
arXiv Detail & Related papers (2021-11-05T14:35:08Z) - Visual Scene Graphs for Audio Source Separation [65.47212419514761]
State-of-the-art approaches for visually-guided audio source separation typically assume sources that have characteristic sounds, such as musical instruments.
We propose Audio Visual Scene Graph Segmenter (AVSGS), a novel deep learning model that embeds the visual structure of the scene as a graph and segments this graph into subgraphs.
Our pipeline is trained end-to-end via a self-supervised task consisting of separating audio sources using the visual graph from artificially mixed sounds.
arXiv Detail & Related papers (2021-09-24T13:40:51Z) - Learning Representations from Audio-Visual Spatial Alignment [76.29670751012198]
We introduce a novel self-supervised pretext task for learning representations from audio-visual content.
The advantages of the proposed pretext task are demonstrated on a variety of audio and visual downstream tasks.
arXiv Detail & Related papers (2020-11-03T16:20:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.