Data Free Backdoor Attacks
- URL: http://arxiv.org/abs/2412.06219v1
- Date: Mon, 09 Dec 2024 05:30:25 GMT
- Title: Data Free Backdoor Attacks
- Authors: Bochuan Cao, Jinyuan Jia, Chuxuan Hu, Wenbo Guo, Zhen Xiang, Jinghui Chen, Bo Li, Dawn Song,
- Abstract summary: DFBA is a retraining-free and data-free backdoor attack without changing the model architecture.
We verify that our injected backdoor is provably undetectable and unchosen by various state-of-the-art defenses.
Our evaluation on multiple datasets demonstrates that our injected backdoor: 1) incurs negligible classification loss, 2) achieves 100% attack success rates, and 3) bypasses six existing state-of-the-art defenses.
- Score: 83.10379074100453
- License:
- Abstract: Backdoor attacks aim to inject a backdoor into a classifier such that it predicts any input with an attacker-chosen backdoor trigger as an attacker-chosen target class. Existing backdoor attacks require either retraining the classifier with some clean data or modifying the model's architecture. As a result, they are 1) not applicable when clean data is unavailable, 2) less efficient when the model is large, and 3) less stealthy due to architecture changes. In this work, we propose DFBA, a novel retraining-free and data-free backdoor attack without changing the model architecture. Technically, our proposed method modifies a few parameters of a classifier to inject a backdoor. Through theoretical analysis, we verify that our injected backdoor is provably undetectable and unremovable by various state-of-the-art defenses under mild assumptions. Our evaluation on multiple datasets further demonstrates that our injected backdoor: 1) incurs negligible classification loss, 2) achieves 100% attack success rates, and 3) bypasses six existing state-of-the-art defenses. Moreover, our comparison with a state-of-the-art non-data-free backdoor attack shows our attack is more stealthy and effective against various defenses while achieving less classification accuracy loss.
Related papers
- Exploiting the Vulnerability of Large Language Models via Defense-Aware Architectural Backdoor [0.24335447922683692]
We introduce a new type of backdoor attack that conceals itself within the underlying model architecture.
The add-on modules of model architecture layers can detect the presence of input trigger tokens and modify layer weights.
We conduct extensive experiments to evaluate our attack methods using two model architecture settings on five different large language datasets.
arXiv Detail & Related papers (2024-09-03T14:54:16Z) - Breaking the False Sense of Security in Backdoor Defense through Re-Activation Attack [32.74007523929888]
We re-investigate the characteristics of backdoored models after defense.
We find that the original backdoors still exist in defense models derived from existing post-training defense strategies.
We empirically show that these dormant backdoors can be easily re-activated during inference.
arXiv Detail & Related papers (2024-05-25T08:57:30Z) - Mitigating Backdoor Attack by Injecting Proactive Defensive Backdoor [63.84477483795964]
Data-poisoning backdoor attacks are serious security threats to machine learning models.
In this paper, we focus on in-training backdoor defense, aiming to train a clean model even when the dataset may be potentially poisoned.
We propose a novel defense approach called PDB (Proactive Defensive Backdoor)
arXiv Detail & Related papers (2024-05-25T07:52:26Z) - Beating Backdoor Attack at Its Own Game [10.131734154410763]
Deep neural networks (DNNs) are vulnerable to backdoor attack.
Existing defense methods have greatly reduced attack success rate.
We propose a highly effective framework which injects non-adversarial backdoors targeting poisoned samples.
arXiv Detail & Related papers (2023-07-28T13:07:42Z) - Rethinking Backdoor Attacks [122.1008188058615]
In a backdoor attack, an adversary inserts maliciously constructed backdoor examples into a training set to make the resulting model vulnerable to manipulation.
Defending against such attacks typically involves viewing these inserted examples as outliers in the training set and using techniques from robust statistics to detect and remove them.
We show that without structural information about the training data distribution, backdoor attacks are indistinguishable from naturally-occurring features in the data.
arXiv Detail & Related papers (2023-07-19T17:44:54Z) - Backdoor Attack with Sparse and Invisible Trigger [57.41876708712008]
Deep neural networks (DNNs) are vulnerable to backdoor attacks.
backdoor attack is an emerging yet threatening training-phase threat.
We propose a sparse and invisible backdoor attack (SIBA)
arXiv Detail & Related papers (2023-05-11T10:05:57Z) - MM-BD: Post-Training Detection of Backdoor Attacks with Arbitrary
Backdoor Pattern Types Using a Maximum Margin Statistic [27.62279831135902]
We propose a post-training defense that detects backdoor attacks with arbitrary types of backdoor embeddings.
Our detector does not need any legitimate clean samples, and can efficiently detect backdoor attacks with arbitrary numbers of source classes.
arXiv Detail & Related papers (2022-05-13T21:32:24Z) - Narcissus: A Practical Clean-Label Backdoor Attack with Limited
Information [22.98039177091884]
"Clean-label" backdoor attacks require knowledge of the entire training set to be effective.
This paper provides an algorithm to mount clean-label backdoor attacks based only on the knowledge of representative examples from the target class.
Our attack works well across datasets and models, even when the trigger presents in the physical world.
arXiv Detail & Related papers (2022-04-11T16:58:04Z) - Black-box Detection of Backdoor Attacks with Limited Information and
Data [56.0735480850555]
We propose a black-box backdoor detection (B3D) method to identify backdoor attacks with only query access to the model.
In addition to backdoor detection, we also propose a simple strategy for reliable predictions using the identified backdoored models.
arXiv Detail & Related papers (2021-03-24T12:06:40Z) - Clean-Label Backdoor Attacks on Video Recognition Models [87.46539956587908]
We show that image backdoor attacks are far less effective on videos.
We propose the use of a universal adversarial trigger as the backdoor trigger to attack video recognition models.
Our proposed backdoor attack is resistant to state-of-the-art backdoor defense/detection methods.
arXiv Detail & Related papers (2020-03-06T04:51:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.