Representational Transfer Learning for Matrix Completion
- URL: http://arxiv.org/abs/2412.06233v1
- Date: Mon, 09 Dec 2024 06:14:47 GMT
- Title: Representational Transfer Learning for Matrix Completion
- Authors: Yong He, Zeyu Li, Dong Liu, Kangxiang Qin, Jiahui Xie,
- Abstract summary: We propose to transfer representational knowledge from multiple sources to a target noisy matrix completion task by aggregating singular subspaces information.
Under our representational similarity framework, we first integrate linear representation information by solving a two-way principal component analysis problem.
The original high-dimensional target matrix completion problem is then transformed into a low-dimensional linear regression.
- Score: 11.089932151845916
- License:
- Abstract: We propose to transfer representational knowledge from multiple sources to a target noisy matrix completion task by aggregating singular subspaces information. Under our representational similarity framework, we first integrate linear representation information by solving a two-way principal component analysis problem based on a properly debiased matrix-valued dataset. After acquiring better column and row representation estimators from the sources, the original high-dimensional target matrix completion problem is then transformed into a low-dimensional linear regression, of which the statistical efficiency is guaranteed. A variety of extensional arguments, including post-transfer statistical inference and robustness against negative transfer, are also discussed alongside. Finally, extensive simulation results and a number of real data cases are reported to support our claims.
Related papers
- Weakly supervised covariance matrices alignment through Stiefel matrices
estimation for MEG applications [64.20396555814513]
This paper introduces a novel domain adaptation technique for time series data, called Mixing model Stiefel Adaptation (MSA)
We exploit abundant unlabeled data in the target domain to ensure effective prediction by establishing pairwise correspondence with equivalent signal variances between domains.
MSA outperforms recent methods in brain-age regression with task variations using magnetoencephalography (MEG) signals from the Cam-CAN dataset.
arXiv Detail & Related papers (2024-01-24T19:04:49Z) - Enhanced Latent Multi-view Subspace Clustering [25.343388834470247]
We propose an Enhanced Latent Multi-view Subspace Clustering (ELMSC) method for recovering latent space representation.
Our proposed ELMSC is able to achieve higher clustering performance than some state-of-art multi-view clustering methods.
arXiv Detail & Related papers (2023-12-22T15:28:55Z) - Mode-wise Principal Subspace Pursuit and Matrix Spiked Covariance Model [13.082805815235975]
We introduce a novel framework called Mode-wise Principal Subspace Pursuit (MOP-UP) to extract hidden variations in both the row and column dimensions for matrix data.
The effectiveness and practical merits of the proposed framework are demonstrated through experiments on both simulated and real datasets.
arXiv Detail & Related papers (2023-07-02T13:59:47Z) - Nonparametric Trace Regression in High Dimensions via Sign Series
Representation [13.37650464374017]
We develop a framework for nonparametric trace regression models via structured sign series representations of high dimensional functions.
In the context of matrix completion, our framework leads to a substantially richer model based on what we coin as the "sign rank" of a matrix.
arXiv Detail & Related papers (2021-05-04T22:20:00Z) - Adversarially-Trained Nonnegative Matrix Factorization [77.34726150561087]
We consider an adversarially-trained version of the nonnegative matrix factorization.
In our formulation, an attacker adds an arbitrary matrix of bounded norm to the given data matrix.
We design efficient algorithms inspired by adversarial training to optimize for dictionary and coefficient matrices.
arXiv Detail & Related papers (2021-04-10T13:13:17Z) - Sparse PCA via $l_{2,p}$-Norm Regularization for Unsupervised Feature
Selection [138.97647716793333]
We propose a simple and efficient unsupervised feature selection method, by combining reconstruction error with $l_2,p$-norm regularization.
We present an efficient optimization algorithm to solve the proposed unsupervised model, and analyse the convergence and computational complexity of the algorithm theoretically.
arXiv Detail & Related papers (2020-12-29T04:08:38Z) - Deep Learning Approach for Matrix Completion Using Manifold Learning [3.04585143845864]
This paper introduces a new latent variables model for data matrix which is a combination of linear and nonlinear models.
We design a novel deep-neural-network-based matrix completion algorithm to address both linear and nonlinear relations among entries of data matrix.
arXiv Detail & Related papers (2020-12-11T01:01:54Z) - Understanding Implicit Regularization in Over-Parameterized Single Index
Model [55.41685740015095]
We design regularization-free algorithms for the high-dimensional single index model.
We provide theoretical guarantees for the induced implicit regularization phenomenon.
arXiv Detail & Related papers (2020-07-16T13:27:47Z) - Robust Matrix Completion with Mixed Data Types [0.0]
We consider the problem of recovering a structured low rank matrix with partially observed entries with mixed data types.
Most approaches assume that there is only one underlying distribution and the low rank constraint is regularized by the matrix Schatten Norm.
We propose a computationally feasible statistical approach with strong recovery guarantees along with an algorithmic framework suited for parallelization to recover a low rank matrix with partially observed entries for mixed data types in one step.
arXiv Detail & Related papers (2020-05-25T21:35:10Z) - Two-Dimensional Semi-Nonnegative Matrix Factorization for Clustering [50.43424130281065]
We propose a new Semi-Nonnegative Matrix Factorization method for 2-dimensional (2D) data, named TS-NMF.
It overcomes the drawback of existing methods that seriously damage the spatial information of the data by converting 2D data to vectors in a preprocessing step.
arXiv Detail & Related papers (2020-05-19T05:54:14Z) - Asymptotic Analysis of an Ensemble of Randomly Projected Linear
Discriminants [94.46276668068327]
In [1], an ensemble of randomly projected linear discriminants is used to classify datasets.
We develop a consistent estimator of the misclassification probability as an alternative to the computationally-costly cross-validation estimator.
We also demonstrate the use of our estimator for tuning the projection dimension on both real and synthetic data.
arXiv Detail & Related papers (2020-04-17T12:47:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.