Enhanced Multi-Object Tracking Using Pose-based Virtual Markers in 3x3 Basketball
- URL: http://arxiv.org/abs/2412.06258v1
- Date: Mon, 09 Dec 2024 07:16:50 GMT
- Title: Enhanced Multi-Object Tracking Using Pose-based Virtual Markers in 3x3 Basketball
- Authors: Li Yin, Calvin Yeung, Qingrui Hu, Jun Ichikawa, Hirotsugu Azechi, Susumu Takahashi, Keisuke Fujii,
- Abstract summary: We propose a novel virtual marker (VM) MOT method for team sports, named Sports-vmTracking.
Our approach achieved an average HOTA score of 72.3%, over 10 points higher than other state-of-theart methods without VM, and resulted in 0 ID switches.
- Score: 3.072051066949152
- License:
- Abstract: Multi-object tracking (MOT) is crucial for various multi-agent analyses such as evaluating team sports tactics and player movements and performance. While pedestrian tracking has advanced with Tracking-by-Detection MOT, team sports like basketball pose unique challenges. These challenges include players' unpredictable movements, frequent close interactions, and visual similarities that complicate pose labeling and lead to significant occlusions, frequent ID switches, and high manual annotation costs. To address these challenges, we propose a novel pose-based virtual marker (VM) MOT method for team sports, named Sports-vmTracking. This method builds on the vmTracking approach developed for multi-animal tracking with active learning. First, we constructed a 3x3 basketball pose dataset for VMs and applied active learning to enhance model performance in generating VMs. Then, we overlaid the VMs on video to identify players, extract their poses with unique IDs, and convert these into bounding boxes for comparison with automated MOT methods. Using our 3x3 basketball dataset, we demonstrated that our VM configuration has been highly effective, and reduced the need for manual corrections and labeling during pose model training while maintaining high accuracy. Our approach achieved an average HOTA score of 72.3%, over 10 points higher than other state-of-the-art methods without VM, and resulted in 0 ID switches. Beyond improving performance in handling occlusions and minimizing ID switches, our framework could substantially increase the time and cost efficiency compared to traditional manual annotation.
Related papers
- GTA: Global Tracklet Association for Multi-Object Tracking in Sports [28.771579713224085]
Multi-object tracking in sports scenarios has become one of the focal points in computer vision.
We propose an appearance-based global tracklet association algorithm to enhance tracking performance.
arXiv Detail & Related papers (2024-11-12T22:16:50Z) - TrackNetV4: Enhancing Fast Sports Object Tracking with Motion Attention Maps [6.548400020461624]
We introduce an enhancement to the TrackNet family by fusing high-level visual features with learnable motion attention maps.
Our approach leverages frame differencing maps, modulated by a motion prompt layer, to highlight key motion regions over time.
We refer to our lightweight, plug-and-play solution, built on top of the existing TrackNet, as TrackNetV4.
arXiv Detail & Related papers (2024-09-22T17:58:09Z) - Hybrid-SORT: Weak Cues Matter for Online Multi-Object Tracking [51.16677396148247]
Multi-Object Tracking (MOT) aims to detect and associate all desired objects across frames.
In this paper, we demonstrate this long-standing challenge in MOT can be efficiently and effectively resolved by incorporating weak cues.
Our method Hybrid-SORT achieves superior performance on diverse benchmarks, including MOT17, MOT20, and especially DanceTrack.
arXiv Detail & Related papers (2023-08-01T18:53:24Z) - An Effective Motion-Centric Paradigm for 3D Single Object Tracking in
Point Clouds [50.19288542498838]
3D single object tracking in LiDAR point clouds (LiDAR SOT) plays a crucial role in autonomous driving.
Current approaches all follow the Siamese paradigm based on appearance matching.
We introduce a motion-centric paradigm to handle LiDAR SOT from a new perspective.
arXiv Detail & Related papers (2023-03-21T17:28:44Z) - AttTrack: Online Deep Attention Transfer for Multi-object Tracking [4.5116674432168615]
Multi-object tracking (MOT) is a vital component of intelligent video analytics applications such as surveillance and autonomous driving.
In this paper, we aim to accelerate MOT by transferring the knowledge from high-level features of a complex network (teacher) to a lightweight network (student) at both training and inference times.
The proposed AttTrack framework has three key components: 1) cross-model feature learning to align intermediate representations from the teacher and student models, 2) interleaving the execution of the two models at inference time, and 3) incorporating the updated predictions from the teacher model as prior knowledge to assist the student model
arXiv Detail & Related papers (2022-10-16T22:15:31Z) - Observation Centric and Central Distance Recovery on Sports Player
Tracking [24.396926939889532]
We propose a motionbased tracking algorithm and three post-processing pipelines for three sports including basketball, football, and volleyball.
Our method achieves a HOTA of 73.968, ranking 3rd place on the 2022 Sportsmot workshop final leaderboard.
arXiv Detail & Related papers (2022-09-27T04:48:11Z) - InterTrack: Interaction Transformer for 3D Multi-Object Tracking [9.283656931246645]
3D multi-object tracking (MOT) is a key problem for autonomous vehicles.
Our proposed solution, InterTrack, generates discriminative object representations for data association.
We validate our approach on the nuScenes 3D MOT benchmark, where we observe significant improvements.
arXiv Detail & Related papers (2022-08-17T03:24:36Z) - Distractor-Aware Fast Tracking via Dynamic Convolutions and MOT
Philosophy [63.91005999481061]
A practical long-term tracker typically contains three key properties, i.e. an efficient model design, an effective global re-detection strategy and a robust distractor awareness mechanism.
We propose a two-task tracking frame work (named DMTrack) to achieve distractor-aware fast tracking via Dynamic convolutions (d-convs) and Multiple object tracking (MOT) philosophy.
Our tracker achieves state-of-the-art performance on the LaSOT, OxUvA, TLP, VOT2018LT and VOT 2019LT benchmarks and runs in real-time (3x faster
arXiv Detail & Related papers (2021-04-25T00:59:53Z) - Learnable Online Graph Representations for 3D Multi-Object Tracking [156.58876381318402]
We propose a unified and learning based approach to the 3D MOT problem.
We employ a Neural Message Passing network for data association that is fully trainable.
We show the merit of the proposed approach on the publicly available nuScenes dataset by achieving state-of-the-art performance of 65.6% AMOTA and 58% fewer ID-switches.
arXiv Detail & Related papers (2021-04-23T17:59:28Z) - Monocular Quasi-Dense 3D Object Tracking [99.51683944057191]
A reliable and accurate 3D tracking framework is essential for predicting future locations of surrounding objects and planning the observer's actions in numerous applications such as autonomous driving.
We propose a framework that can effectively associate moving objects over time and estimate their full 3D bounding box information from a sequence of 2D images captured on a moving platform.
arXiv Detail & Related papers (2021-03-12T15:30:02Z) - MOTChallenge: A Benchmark for Single-Camera Multiple Target Tracking [72.76685780516371]
We present MOTChallenge, a benchmark for single-camera Multiple Object Tracking (MOT)
The benchmark is focused on multiple people tracking, since pedestrians are by far the most studied object in the tracking community.
We provide a categorization of state-of-the-art trackers and a broad error analysis.
arXiv Detail & Related papers (2020-10-15T06:52:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.