Measuring Pre-training Data Quality without Labels for Time Series Foundation Models
- URL: http://arxiv.org/abs/2412.06368v1
- Date: Mon, 09 Dec 2024 10:38:30 GMT
- Title: Measuring Pre-training Data Quality without Labels for Time Series Foundation Models
- Authors: Songkang Wen, Vasilii Feofanov, Jianfeng Zhang,
- Abstract summary: We introduce contrastive accuracy, a new measure to evaluate the quality of the representation space learned by the foundation model.
Our experiments reveal the positive correlation between the proposed measure and the accuracy of the model on a collection of downstream tasks.
- Score: 10.64362760848387
- License:
- Abstract: Recently, there has been a growing interest in time series foundation models that generalize across different downstream tasks. A key to strong foundation models is a diverse pre-training dataset, which is particularly challenging to collect for time series classification. In this work, we explore the performance of a contrastive-learning-based foundation model as a function of the data used for pre-training. We introduce contrastive accuracy, a new measure to evaluate the quality of the representation space learned by the foundation model. Our experiments reveal the positive correlation between the proposed measure and the accuracy of the model on a collection of downstream tasks. This suggests that the contrastive accuracy can serve as a criterion to search for time series datasets that can enhance the pre-training and improve thereby the foundation model's generalization.
Related papers
- Enhancing Foundation Models for Time Series Forecasting via Wavelet-based Tokenization [74.3339999119713]
We develop a wavelet-based tokenizer that allows models to learn complex representations directly in the space of time-localized frequencies.
Our method first scales and decomposes the input time series, then thresholds and quantizes the wavelet coefficients, and finally pre-trains an autoregressive model to forecast coefficients for the forecast horizon.
arXiv Detail & Related papers (2024-12-06T18:22:59Z) - In-Context Fine-Tuning for Time-Series Foundation Models [18.348874079298298]
In particular, we design a pretrained foundation model that can be prompted with multiple time-series examples.
Our foundation model is specifically trained to utilize examples from multiple related time-series in its context window.
We show that such a foundation model that uses in-context examples at inference time can obtain much better performance on popular forecasting benchmarks.
arXiv Detail & Related papers (2024-10-31T16:20:04Z) - GIFT-Eval: A Benchmark For General Time Series Forecasting Model Evaluation [90.53485251837235]
Time series foundation models excel in zero-shot forecasting, handling diverse tasks without explicit training.
GIFT-Eval is a pioneering benchmark aimed at promoting evaluation across diverse datasets.
GIFT-Eval encompasses 23 datasets over 144,000 time series and 177 million data points.
arXiv Detail & Related papers (2024-10-14T11:29:38Z) - Chronos: Learning the Language of Time Series [79.38691251254173]
Chronos is a framework for pretrained probabilistic time series models.
We show that Chronos models can leverage time series data from diverse domains to improve zero-shot accuracy on unseen forecasting tasks.
arXiv Detail & Related papers (2024-03-12T16:53:54Z) - MOMENT: A Family of Open Time-series Foundation Models [19.0845213853369]
We introduce MOMENT, a family of open-source foundation models for general-purpose time series analysis.
We compile a collection of public time series, called the Time series Pile, and systematically tackle time series-specific challenges.
We build on recent work to design a benchmark to evaluate time series foundation models on diverse tasks and datasets in limited supervision settings.
arXiv Detail & Related papers (2024-02-06T10:48:46Z) - Large Pre-trained time series models for cross-domain Time series analysis tasks [20.228846068418765]
Large Pre-trained Time-series Models (LPTM) is a novel method of adaptive segmentation that automatically identifies optimal dataset-specific segmentation strategy during pre-training.
LPTM achieves superior forecasting and time-series classification results taking up to 40% less data and 50% less training time compared to state-of-art baselines.
arXiv Detail & Related papers (2023-11-19T20:16:16Z) - Lag-Llama: Towards Foundation Models for Probabilistic Time Series
Forecasting [54.04430089029033]
We present Lag-Llama, a general-purpose foundation model for time series forecasting based on a decoder-only transformer architecture.
Lag-Llama is pretrained on a large corpus of diverse time series data from several domains, and demonstrates strong zero-shot generalization capabilities.
When fine-tuned on relatively small fractions of such previously unseen datasets, Lag-Llama achieves state-of-the-art performance.
arXiv Detail & Related papers (2023-10-12T12:29:32Z) - Pushing the Limits of Pre-training for Time Series Forecasting in the
CloudOps Domain [54.67888148566323]
We introduce three large-scale time series forecasting datasets from the cloud operations domain.
We show it is a strong zero-shot baseline and benefits from further scaling, both in model and dataset size.
Accompanying these datasets and results is a suite of comprehensive benchmark results comparing classical and deep learning baselines to our pre-trained method.
arXiv Detail & Related papers (2023-10-08T08:09:51Z) - Toward a Foundation Model for Time Series Data [34.1973242428317]
A foundation model is a machine learning model trained on a large and diverse set of data.
We develop an effective time series foundation model by leveraging unlabeled samples from multiple domains.
arXiv Detail & Related papers (2023-10-05T21:44:50Z) - Universal Domain Adaptation from Foundation Models: A Baseline Study [58.51162198585434]
We make empirical studies of state-of-the-art UniDA methods using foundation models.
We introduce textitCLIP distillation, a parameter-free method specifically designed to distill target knowledge from CLIP models.
Although simple, our method outperforms previous approaches in most benchmark tasks.
arXiv Detail & Related papers (2023-05-18T16:28:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.