Simulating Human-like Daily Activities with Desire-driven Autonomy
- URL: http://arxiv.org/abs/2412.06435v2
- Date: Tue, 04 Mar 2025 16:22:34 GMT
- Title: Simulating Human-like Daily Activities with Desire-driven Autonomy
- Authors: Yiding Wang, Yuxuan Chen, Fangwei Zhong, Long Ma, Yizhou Wang,
- Abstract summary: We introduce a Desire-driven Autonomous Agent (D2A) that can enable a large language model (LLM) to autonomously propose and select tasks.<n>At each step, the agent evaluates the value of its current state, proposes a set of candidate activities, and selects the one that best aligns with its intrinsic motivations.
- Score: 25.380194192389492
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Desires motivate humans to interact autonomously with the complex world. In contrast, current AI agents require explicit task specifications, such as instructions or reward functions, which constrain their autonomy and behavioral diversity. In this paper, we introduce a Desire-driven Autonomous Agent (D2A) that can enable a large language model (LLM) to autonomously propose and select tasks, motivated by satisfying its multi-dimensional desires. Specifically, the motivational framework of D2A is mainly constructed by a dynamic Value System, inspired by the Theory of Needs. It incorporates an understanding of human-like desires, such as the need for social interaction, personal fulfillment, and self-care. At each step, the agent evaluates the value of its current state, proposes a set of candidate activities, and selects the one that best aligns with its intrinsic motivations. We conduct experiments on Concordia, a text-based simulator, to demonstrate that our agent generates coherent, contextually relevant daily activities while exhibiting variability and adaptability similar to human behavior. A comparative analysis with other LLM-based agents demonstrates that our approach significantly enhances the rationality of the simulated activities.
Related papers
- Building Knowledge from Interactions: An LLM-Based Architecture for Adaptive Tutoring and Social Reasoning [42.09560737219404]
Large Language Models show promise in human-like communication, but their standalone use is hindered by memory constraints and contextual incoherence.
This work presents a multimodal, cognitively inspired framework that enhances LLM-based autonomous decision-making in social and task-oriented Human-Robot Interaction.
To further enhance autonomy and personalization, we introduce a memory system for selecting, storing and retrieving experiences.
arXiv Detail & Related papers (2025-04-02T10:45:41Z) - Modeling Task Immersion based on Goal Activation Mechanism [0.0]
Excessive arousal in a single task has drawbacks, such as overlooking events outside of the task.<n>This study constructs a computational model of arousal dynamics where the excessively increased arousal makes the task transition difficult.
arXiv Detail & Related papers (2024-12-06T15:12:47Z) - Rationality based Innate-Values-driven Reinforcement Learning [1.8220718426493654]
Innate values describe agents' intrinsic motivations, which reflect their inherent interests and preferences to pursue goals.
It is an excellent model to describe the innate-values-driven (IV) behaviors of AI agents.
This paper proposes a hierarchical reinforcement learning model -- innate-values-driven reinforcement learning model.
arXiv Detail & Related papers (2024-11-14T03:28:02Z) - PersLLM: A Personified Training Approach for Large Language Models [66.16513246245401]
We propose PersLLM, integrating psychology-grounded principles of personality: social practice, consistency, and dynamic development.
We incorporate personality traits directly into the model parameters, enhancing the model's resistance to induction, promoting consistency, and supporting the dynamic evolution of personality.
arXiv Detail & Related papers (2024-07-17T08:13:22Z) - Position Paper: Agent AI Towards a Holistic Intelligence [53.35971598180146]
We emphasize developing Agent AI -- an embodied system that integrates large foundation models into agent actions.
In this paper, we propose a novel large action model to achieve embodied intelligent behavior, the Agent Foundation Model.
arXiv Detail & Related papers (2024-02-28T16:09:56Z) - DCIR: Dynamic Consistency Intrinsic Reward for Multi-Agent Reinforcement
Learning [84.22561239481901]
We propose a new approach that enables agents to learn whether their behaviors should be consistent with that of other agents.
We evaluate DCIR in multiple environments including Multi-agent Particle, Google Research Football and StarCraft II Micromanagement.
arXiv Detail & Related papers (2023-12-10T06:03:57Z) - Interactive Autonomous Navigation with Internal State Inference and
Interactivity Estimation [58.21683603243387]
We propose three auxiliary tasks with relational-temporal reasoning and integrate them into the standard Deep Learning framework.
These auxiliary tasks provide additional supervision signals to infer the behavior patterns other interactive agents.
Our approach achieves robust and state-of-the-art performance in terms of standard evaluation metrics.
arXiv Detail & Related papers (2023-11-27T18:57:42Z) - Investigating Agency of LLMs in Human-AI Collaboration Tasks [24.562034082480608]
We build on social-cognitive theory to develop a framework of features through which Agency is expressed in dialogue.
We collect a new dataset of 83 human-human collaborative interior design conversations.
arXiv Detail & Related papers (2023-05-22T08:17:14Z) - Learning Goal-based Movement via Motivational-based Models in Cognitive
Mobile Robots [58.720142291102135]
Humans have needs motivating their behavior according to intensity and context.
We also create preferences associated with each action's perceived pleasure, which is susceptible to changes over time.
This makes decision-making more complex, requiring learning to balance needs and preferences according to the context.
arXiv Detail & Related papers (2023-02-20T04:52:24Z) - Autonomous Open-Ended Learning of Tasks with Non-Stationary
Interdependencies [64.0476282000118]
Intrinsic motivations have proven to generate a task-agnostic signal to properly allocate the training time amongst goals.
While the majority of works in the field of intrinsically motivated open-ended learning focus on scenarios where goals are independent from each other, only few of them studied the autonomous acquisition of interdependent tasks.
In particular, we first deepen the analysis of a previous system, showing the importance of incorporating information about the relationships between tasks at a higher level of the architecture.
Then we introduce H-GRAIL, a new system that extends the previous one by adding a new learning layer to store the autonomously acquired sequences
arXiv Detail & Related papers (2022-05-16T10:43:01Z) - BEHAVIOR: Benchmark for Everyday Household Activities in Virtual,
Interactive, and Ecological Environments [70.18430114842094]
We introduce BEHAVIOR, a benchmark for embodied AI with 100 activities in simulation.
These activities are designed to be realistic, diverse, and complex.
We include 500 human demonstrations in virtual reality (VR) to serve as the human ground truth.
arXiv Detail & Related papers (2021-08-06T23:36:23Z) - Intrinsic Motivation for Encouraging Synergistic Behavior [55.10275467562764]
We study the role of intrinsic motivation as an exploration bias for reinforcement learning in sparse-reward synergistic tasks.
Our key idea is that a good guiding principle for intrinsic motivation in synergistic tasks is to take actions which affect the world in ways that would not be achieved if the agents were acting on their own.
arXiv Detail & Related papers (2020-02-12T19:34:51Z) - Mutual Information-based State-Control for Intrinsically Motivated
Reinforcement Learning [102.05692309417047]
In reinforcement learning, an agent learns to reach a set of goals by means of an external reward signal.
In the natural world, intelligent organisms learn from internal drives, bypassing the need for external signals.
We propose to formulate an intrinsic objective as the mutual information between the goal states and the controllable states.
arXiv Detail & Related papers (2020-02-05T19:21:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.