Take Fake as Real: Realistic-like Robust Black-box Adversarial Attack to Evade AIGC Detection
- URL: http://arxiv.org/abs/2412.06727v2
- Date: Mon, 16 Dec 2024 11:28:49 GMT
- Title: Take Fake as Real: Realistic-like Robust Black-box Adversarial Attack to Evade AIGC Detection
- Authors: Caiyun Xie, Dengpan Ye, Yunming Zhang, Long Tang, Yunna Lv, Jiacheng Deng, Jiawei Song,
- Abstract summary: We propose a realistic-like Robust Black-box Adrial attack (R$2$BA) with post-processing fusion optimization.
We show that R$2$BA exhibits impressive anti-detection performance, excellent invisibility, and strong robustness in GAN-based and diffusion-based cases.
- Score: 4.269334070603315
- License:
- Abstract: The security of AI-generated content (AIGC) detection is crucial for ensuring multimedia content credibility. To enhance detector security, research on adversarial attacks has become essential. However, most existing adversarial attacks focus only on GAN-generated facial images detection, struggle to be effective on multi-class natural images and diffusion-based detectors, and exhibit poor invisibility. To fill this gap, we first conduct an in-depth analysis of the vulnerability of AIGC detectors and discover the feature that detectors vary in vulnerability to different post-processing. Then, considering that the detector is agnostic in real-world scenarios and given this discovery, we propose a Realistic-like Robust Black-box Adversarial attack (R$^2$BA) with post-processing fusion optimization. Unlike typical perturbations, R$^2$BA uses real-world post-processing, i.e., Gaussian blur, JPEG compression, Gaussian noise and light spot to generate adversarial examples. Specifically, we use a stochastic particle swarm algorithm with inertia decay to optimize post-processing fusion intensity and explore the detector's decision boundary. Guided by the detector's fake probability, R$^2$BA enhances/weakens the detector-vulnerable/detector-robust post-processing intensity to strike a balance between adversariality and invisibility. Extensive experiments on popular/commercial AIGC detectors and datasets demonstrate that R$^2$BA exhibits impressive anti-detection performance, excellent invisibility, and strong robustness in GAN-based and diffusion-based cases. Compared to state-of-the-art white-box and black-box attacks, R$^2$BA shows significant improvements of 15\%--72\% and 21\%--47\% in anti-detection performance under the original and robust scenario respectively, offering valuable insights for the security of AIGC detection in real-world applications.
Related papers
- Understanding and Improving Training-Free AI-Generated Image Detections with Vision Foundation Models [68.90917438865078]
Deepfake techniques for facial synthesis and editing pose serious risks for generative models.
In this paper, we investigate how detection performance varies across model backbones, types, and datasets.
We introduce Contrastive Blur, which enhances performance on facial images, and MINDER, which addresses noise type bias, balancing performance across domains.
arXiv Detail & Related papers (2024-11-28T13:04:45Z) - Twin Trigger Generative Networks for Backdoor Attacks against Object Detection [14.578800906364414]
Object detectors, which are widely used in real-world applications, are vulnerable to backdoor attacks.
Most research on backdoor attacks has focused on image classification, with limited investigation into object detection.
We propose novel twin trigger generative networks to generate invisible triggers for implanting backdoors into models during training, and visible triggers for steady activation during inference.
arXiv Detail & Related papers (2024-11-23T03:46:45Z) - StealthDiffusion: Towards Evading Diffusion Forensic Detection through Diffusion Model [62.25424831998405]
StealthDiffusion is a framework that modifies AI-generated images into high-quality, imperceptible adversarial examples.
It is effective in both white-box and black-box settings, transforming AI-generated images into high-quality adversarial forgeries.
arXiv Detail & Related papers (2024-08-11T01:22:29Z) - Vulnerabilities in AI-generated Image Detection: The Challenge of Adversarial Attacks [17.87119255294563]
We investigate the vulnerability of state-of-the-art AIGI detectors against adversarial attack under white-box and black-box settings.
We propose a new attack containing two main parts. First, inspired by the obvious difference between real images and fake images in the frequency domain, we add perturbations under the frequency domain to push the image away from its original frequency distribution.
We show that adversarial attack is truly a real threat to AIGI detectors, because FPBA can deliver successful black-box attacks across models, generators, defense methods, and even evade cross-generator detection.
arXiv Detail & Related papers (2024-07-30T14:07:17Z) - Two-stage optimized unified adversarial patch for attacking
visible-infrared cross-modal detectors in the physical world [0.0]
This work introduces the Two-stage Optimized Unified Adversarial Patch (TOUAP) designed for performing attacks against visible-infrared cross-modal detectors in real-world, black-box settings.
arXiv Detail & Related papers (2023-12-04T10:25:34Z) - To Make Yourself Invisible with Adversarial Semantic Contours [47.755808439588094]
Adversarial Semantic Contour (ASC) is an estimate of a Bayesian formulation of sparse attack with a deceived prior of object contour.
We show that ASC can corrupt the prediction of 9 modern detectors with different architectures.
We conclude with cautions about contour being the common weakness of object detectors with various architecture.
arXiv Detail & Related papers (2023-03-01T07:22:39Z) - Adversarially-Aware Robust Object Detector [85.10894272034135]
We propose a Robust Detector (RobustDet) based on adversarially-aware convolution to disentangle gradients for model learning on clean and adversarial images.
Our model effectively disentangles gradients and significantly enhances the detection robustness with maintaining the detection ability on clean images.
arXiv Detail & Related papers (2022-07-13T13:59:59Z) - ReDFeat: Recoupling Detection and Description for Multimodal Feature
Learning [51.07496081296863]
We recouple independent constraints of detection and description of multimodal feature learning with a mutual weighting strategy.
We propose a detector that possesses a large receptive field and is equipped with learnable non-maximum suppression layers.
We build a benchmark that contains cross visible, infrared, near-infrared and synthetic aperture radar image pairs for evaluating the performance of features in feature matching and image registration tasks.
arXiv Detail & Related papers (2022-05-16T04:24:22Z) - Robust and Accurate Object Detection via Adversarial Learning [111.36192453882195]
This work augments the fine-tuning stage for object detectors by exploring adversarial examples.
Our approach boosts the performance of state-of-the-art EfficientDets by +1.1 mAP on the object detection benchmark.
arXiv Detail & Related papers (2021-03-23T19:45:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.