JAPAGEN: Efficient Few/Zero-shot Learning via Japanese Training Dataset Generation with LLM
- URL: http://arxiv.org/abs/2412.06738v1
- Date: Mon, 09 Dec 2024 18:27:32 GMT
- Title: JAPAGEN: Efficient Few/Zero-shot Learning via Japanese Training Dataset Generation with LLM
- Authors: Takuro Fujii, Satoru Katsumata,
- Abstract summary: Large Language Models (LLMs) offer advantages such as enhanced inference efficiency and reduced costs associated with data collection.
In this paper, we address the fundamental research question: Can LLMs serve as proficient training data generators for other language tasks?
Specifically, we leverage LLMs to synthesize supervised training data under few-shot and zero-shot learning scenarios.
We utilize this synthesized data to train compact models (e.g., BERT)
- Score: 2.642698101441705
- License:
- Abstract: Recently some studies have highlighted the potential of Large Language Models (LLMs) as effective generators of supervised training data, offering advantages such as enhanced inference efficiency and reduced costs associated with data collection. However, these studies have predominantly focused on English language tasks. In this paper, we address the fundamental research question: Can LLMs serve as proficient training data generators for other language tasks? Specifically, we leverage LLMs to synthesize supervised training data under few-shot and zero-shot learning scenarios across six diverse Japanese downstream tasks. Subsequently, we utilize this synthesized data to train compact models (e.g., BERT). This novel methodology is termed JAPAGEN. Our experimental findings underscore that JAPAGEN achieves robust performance in classification tasks that necessitate formal text inputs, demonstrating competitive results compared to conventional LLM prompting strategies.
Related papers
- Enhancing Code Generation for Low-Resource Languages: No Silver Bullet [55.39571645315926]
Large Language Models (LLMs) rely on large and diverse datasets to learn syntax, semantics, and usage patterns of programming languages.
For low-resource languages, the limited availability of such data hampers the models' ability to generalize effectively.
We present an empirical study investigating the effectiveness of several approaches for boosting LLMs' performance on low-resource languages.
arXiv Detail & Related papers (2025-01-31T12:23:28Z) - TinyHelen's First Curriculum: Training and Evaluating Tiny Language Models in a Simpler Language Environment [30.93798042712827]
Training language models (LMs) and their application agents is increasingly costly due to large datasets and models.
We propose a pipeline to refine text data by eliminating noise, minimizing vocabulary, and maintaining genre-specific patterns.
Our experiments show that leaner pre-training boosts LM learning efficiency.
arXiv Detail & Related papers (2024-12-31T16:08:15Z) - Evaluating Linguistic Capabilities of Multimodal LLMs in the Lens of Few-Shot Learning [15.919493497867567]
This study aims to evaluate the performance of Multimodal Large Language Models (MLLMs) on the VALSE benchmark.
We conducted a comprehensive assessment of state-of-the-art MLLMs, varying in model size and pretraining datasets.
arXiv Detail & Related papers (2024-07-17T11:26:47Z) - SELF-GUIDE: Better Task-Specific Instruction Following via Self-Synthetic Finetuning [70.21358720599821]
Large language models (LLMs) hold the promise of solving diverse tasks when provided with appropriate natural language prompts.
We propose SELF-GUIDE, a multi-stage mechanism in which we synthesize task-specific input-output pairs from the student LLM.
We report an absolute improvement of approximately 15% for classification tasks and 18% for generation tasks in the benchmark's metrics.
arXiv Detail & Related papers (2024-07-16T04:41:58Z) - LLMaAA: Making Large Language Models as Active Annotators [32.57011151031332]
We propose LLMaAA, which takes large language models as annotators and puts them into an active learning loop to determine what to annotate efficiently.
We conduct experiments and analysis on two classic NLP tasks, named entity recognition and relation extraction.
With LLMaAA, task-specific models trained from LLM-generated labels can outperform the teacher within only hundreds of annotated examples.
arXiv Detail & Related papers (2023-10-30T14:54:15Z) - TRACE: A Comprehensive Benchmark for Continual Learning in Large
Language Models [52.734140807634624]
Aligned large language models (LLMs) demonstrate exceptional capabilities in task-solving, following instructions, and ensuring safety.
Existing continual learning benchmarks lack sufficient challenge for leading aligned LLMs.
We introduce TRACE, a novel benchmark designed to evaluate continual learning in LLMs.
arXiv Detail & Related papers (2023-10-10T16:38:49Z) - CulturaX: A Cleaned, Enormous, and Multilingual Dataset for Large
Language Models in 167 Languages [86.90220551111096]
Training datasets for large language models (LLMs) are often not fully disclosed.
We present CulturaX, a substantial multilingual dataset with 6.3 trillion tokens in 167 languages.
arXiv Detail & Related papers (2023-09-17T23:49:10Z) - Large Language Models as Data Preprocessors [9.99065004972981]
Large Language Models (LLMs) have marked a significant advancement in artificial intelligence.
This study explores their potential in data preprocessing, a critical stage in data mining and analytics applications.
We propose an LLM-based framework for data preprocessing, which integrates cutting-edge prompt engineering techniques.
arXiv Detail & Related papers (2023-08-30T23:28:43Z) - Aligning Large Language Models with Human: A Survey [53.6014921995006]
Large Language Models (LLMs) trained on extensive textual corpora have emerged as leading solutions for a broad array of Natural Language Processing (NLP) tasks.
Despite their notable performance, these models are prone to certain limitations such as misunderstanding human instructions, generating potentially biased content, or factually incorrect information.
This survey presents a comprehensive overview of these alignment technologies, including the following aspects.
arXiv Detail & Related papers (2023-07-24T17:44:58Z) - Language models are weak learners [71.33837923104808]
We show that prompt-based large language models can operate effectively as weak learners.
We incorporate these models into a boosting approach, which can leverage the knowledge within the model to outperform traditional tree-based boosting.
Results illustrate the potential for prompt-based LLMs to function not just as few-shot learners themselves, but as components of larger machine learning pipelines.
arXiv Detail & Related papers (2023-06-25T02:39:19Z) - DEER: A Data Efficient Language Model for Event Temporal Reasoning [44.21992914516526]
We propose DEER, a language model that is trained to focus on event temporal relations.
Our experimental results show that DEER can achieve SOTA results and works particularly well in low-resource settings.
arXiv Detail & Related papers (2020-12-30T18:57:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.