Innovative Sentiment Analysis and Prediction of Stock Price Using FinBERT, GPT-4 and Logistic Regression: A Data-Driven Approach
- URL: http://arxiv.org/abs/2412.06837v1
- Date: Sat, 07 Dec 2024 05:20:31 GMT
- Title: Innovative Sentiment Analysis and Prediction of Stock Price Using FinBERT, GPT-4 and Logistic Regression: A Data-Driven Approach
- Authors: Olamilekan Shobayo, Sidikat Adeyemi-Longe, Olusogo Popoola, Bayode Ogunleye,
- Abstract summary: This study explores the comparative performance of cutting-edge AI models, i.e., Finaance Bidirectional representations from Transsformers (FinBERT), Generatice Pre-trained Transformer GPT-4, and Logistic Regression, for sentiment analysis and stock index prediction.
By leveraging advanced natural language processing models like GPT-4 and FinBERT, alongside a traditional machine learning model, Logistic Regression, we aim to classify market sentiment, generate sentiment scores, and predict market price movements.
- Score: 0.0
- License:
- Abstract: This study explores the comparative performance of cutting-edge AI models, i.e., Finaance Bidirectional Encoder representations from Transsformers (FinBERT), Generatice Pre-trained Transformer GPT-4, and Logistic Regression, for sentiment analysis and stock index prediction using financial news and the NGX All-Share Index data label. By leveraging advanced natural language processing models like GPT-4 and FinBERT, alongside a traditional machine learning model, Logistic Regression, we aim to classify market sentiment, generate sentiment scores, and predict market price movements. This research highlights global AI advancements in stock markets, showcasing how state-of-the-art language models can contribute to understanding complex financial data. The models were assessed using metrics such as accuracy, precision, recall, F1 score, and ROC AUC. Results indicate that Logistic Regression outperformed the more computationally intensive FinBERT and predefined approach of versatile GPT-4, with an accuracy of 81.83% and a ROC AUC of 89.76%. The GPT-4 predefined approach exhibited a lower accuracy of 54.19% but demonstrated strong potential in handling complex data. FinBERT, while offering more sophisticated analysis, was resource-demanding and yielded a moderate performance. Hyperparameter optimization using Optuna and cross-validation techniques ensured the robustness of the models. This study highlights the strengths and limitations of the practical applications of AI approaches in stock market prediction and presents Logistic Regression as the most efficient model for this task, with FinBERT and GPT-4 representing emerging tools with potential for future exploration and innovation in AI-driven financial analytics
Related papers
- Comparative Analysis of LSTM, GRU, and Transformer Models for Stock Price Prediction [0.9217021281095907]
This paper takes AI driven stock price trend prediction as the core research.
It makes a model training data set of famous Tesla cars from 2015 to 2024, and compares LSTM, GRU, and Transformer Models.
The experimental results show that the accuracy of the LSTM model is 94%.
arXiv Detail & Related papers (2024-10-20T14:00:58Z) - Enhancing TinyBERT for Financial Sentiment Analysis Using GPT-Augmented FinBERT Distillation [0.0]
This study proposes leveraging the generative capabilities of large language models (LLMs) to create synthetic, domain-specific training data.
The research specifically aims to enhance FinBERT, a BERT model fine-tuned for financial sentiment analysis, and develop TinyFinBERT, a compact transformer model.
arXiv Detail & Related papers (2024-09-19T10:22:23Z) - Harnessing Earnings Reports for Stock Predictions: A QLoRA-Enhanced LLM Approach [6.112119533910774]
This paper introduces an advanced approach by employing Large Language Models (LLMs) instruction fine-tuned with a novel combination of instruction-based techniques and quantized low-rank adaptation (QLoRA) compression.
Our methodology integrates 'base factors', such as financial metric growth and earnings transcripts, with 'external factors', including recent market indices performances and analyst grades, to create a rich, supervised dataset.
This study not only demonstrates the power of integrating cutting-edge AI with fine-tuned financial data but also paves the way for future research in enhancing AI-driven financial analysis tools.
arXiv Detail & Related papers (2024-08-13T04:53:31Z) - Predicting Stock Prices with FinBERT-LSTM: Integrating News Sentiment Analysis [2.7921137693344384]
We use deep learning networks, based on the history of stock prices and articles of financial, business, technical news that introduce market information to predict stock prices.
We developed a pre-trained NLP model known as FinBERT, designed to discern the sentiments within financial texts.
This model utilizes news categories related to the stock market structure hierarchy, namely market, industry, and stock related news categories, combined with the stock market's stock price situation in the previous week for prediction.
arXiv Detail & Related papers (2024-07-23T03:26:07Z) - A Critical Evaluation of AI Feedback for Aligning Large Language Models [60.42291111149438]
We show that simple supervised fine-tuning with GPT-4 as the teacher outperforms existing RLAIF pipelines.
More generally, we find that the gains from RLAIF vary substantially across base model families, test-time evaluation protocols, and critic models.
arXiv Detail & Related papers (2024-02-19T18:53:54Z) - Can Large Language Models Beat Wall Street? Unveiling the Potential of AI in Stock Selection [0.07499722271664146]
This paper introduces MarketSenseAI, an innovative framework leveraging GPT-4's advanced reasoning for selecting stocks in financial markets.
MarketSenseAI analyzes diverse data sources, including market trends, news, fundamentals, and macroeconomic factors, to emulate expert investment decision-making.
Our findings highlight the transformative potential of Large Language Models in financial decision-making.
arXiv Detail & Related papers (2024-01-08T08:58:46Z) - Diffusion Variational Autoencoder for Tackling Stochasticity in
Multi-Step Regression Stock Price Prediction [54.21695754082441]
Multi-step stock price prediction over a long-term horizon is crucial for forecasting its volatility.
Current solutions to multi-step stock price prediction are mostly designed for single-step, classification-based predictions.
We combine a deep hierarchical variational-autoencoder (VAE) and diffusion probabilistic techniques to do seq2seq stock prediction.
Our model is shown to outperform state-of-the-art solutions in terms of its prediction accuracy and variance.
arXiv Detail & Related papers (2023-08-18T16:21:15Z) - Can ChatGPT Forecast Stock Price Movements? Return Predictability and Large Language Models [51.3422222472898]
We document the capability of large language models (LLMs) like ChatGPT to predict stock price movements using news headlines.
We develop a theoretical model incorporating information capacity constraints, underreaction, limits-to-arbitrage, and LLMs.
arXiv Detail & Related papers (2023-04-15T19:22:37Z) - GPT-4 Technical Report [116.90398195245983]
GPT-4 is a large-scale, multimodal model which can accept image and text inputs and produce text outputs.
It exhibits human-level performance on various professional and academic benchmarks, including passing a simulated bar exam with a score around the top 10% of test takers.
arXiv Detail & Related papers (2023-03-15T17:15:04Z) - Bayesian Bilinear Neural Network for Predicting the Mid-price Dynamics
in Limit-Order Book Markets [84.90242084523565]
Traditional time-series econometric methods often appear incapable of capturing the true complexity of the multi-level interactions driving the price dynamics.
By adopting a state-of-the-art second-order optimization algorithm, we train a Bayesian bilinear neural network with temporal attention.
By addressing the use of predictive distributions to analyze errors and uncertainties associated with the estimated parameters and model forecasts, we thoroughly compare our Bayesian model with traditional ML alternatives.
arXiv Detail & Related papers (2022-03-07T18:59:54Z) - Leveraging Unlabeled Data to Predict Out-of-Distribution Performance [63.740181251997306]
Real-world machine learning deployments are characterized by mismatches between the source (training) and target (test) distributions.
In this work, we investigate methods for predicting the target domain accuracy using only labeled source data and unlabeled target data.
We propose Average Thresholded Confidence (ATC), a practical method that learns a threshold on the model's confidence, predicting accuracy as the fraction of unlabeled examples.
arXiv Detail & Related papers (2022-01-11T23:01:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.