FP=xINT:A Low-Bit Series Expansion Algorithm for Post-Training Quantization
- URL: http://arxiv.org/abs/2412.06865v1
- Date: Mon, 09 Dec 2024 08:50:28 GMT
- Title: FP=xINT:A Low-Bit Series Expansion Algorithm for Post-Training Quantization
- Authors: Boyang Zhang, Daning Cheng, Yunquan Zhang, Fangmin Liu,
- Abstract summary: Post-Training Quantization (PTQ) converts pre-trained Full-Precision (FP) models into quantized versions without training.
Existing methods significantly degrade performance and quantization efficiency at extremely low settings due to quantization noise.
We introduce a deep model series expansion framework to address this issue, enabling rapid and accurate approximation of unquantized models without calibration sets or fine-tuning.
- Score: 3.560046736432574
- License:
- Abstract: Post-Training Quantization (PTQ) converts pre-trained Full-Precision (FP) models into quantized versions without training. While existing methods reduce size and computational costs, they also significantly degrade performance and quantization efficiency at extremely low settings due to quantization noise. We introduce a deep model series expansion framework to address this issue, enabling rapid and accurate approximation of unquantized models without calibration sets or fine-tuning. This is the first use of series expansion for neural network quantization. Specifically, our method expands the FP model into multiple low-bit basis models. To ensure accurate quantization, we develop low-bit basis model expansions at different granularities (tensor, layer, model), and theoretically confirm their convergence to the dense model, thus restoring FP model accuracy. Additionally, we design AbelianAdd/Mul operations between isomorphic models in the low-bit expansion, forming an Abelian group to ensure operation parallelism and commutativity. The experiments show that our algorithm achieves state-of-the-art performance in low-bit settings; for example, 4-bit quantization of ResNet-50 surpasses the original accuracy, reaching 77.03%. The code will be made public.
Related papers
- RoSTE: An Efficient Quantization-Aware Supervised Fine-Tuning Approach for Large Language Models [95.32315448601241]
We propose an algorithm named Rotated Straight-Through-Estimator (RoSTE)
RoSTE combines quantization-aware supervised fine-tuning (QA-SFT) with an adaptive rotation strategy to reduce activation outliers.
Our findings reveal that the prediction error is directly proportional to the quantization error of the converged weights, which can be effectively managed through an optimized rotation configuration.
arXiv Detail & Related papers (2025-02-13T06:44:33Z) - TCAQ-DM: Timestep-Channel Adaptive Quantization for Diffusion Models [49.65286242048452]
We propose a novel method dubbed Timestep-Channel Adaptive Quantization for Diffusion Models (TCAQ-DM)
The proposed method substantially outperforms the state-of-the-art approaches in most cases.
arXiv Detail & Related papers (2024-12-21T16:57:54Z) - Diffusion Product Quantization [18.32568431229839]
We explore the quantization of diffusion models in extreme compression regimes to reduce model size while maintaining performance.
We apply our compression method to the DiT model on ImageNet and consistently outperform other quantization approaches.
arXiv Detail & Related papers (2024-11-19T07:47:37Z) - SqueezeLLM: Dense-and-Sparse Quantization [80.32162537942138]
Main bottleneck for generative inference with LLMs is memory bandwidth, rather than compute, for single batch inference.
We introduce SqueezeLLM, a post-training quantization framework that enables lossless compression to ultra-low precisions of up to 3-bit.
Our framework incorporates two novel ideas: (i) sensitivity-based non-uniform quantization, which searches for the optimal bit precision assignment based on second-order information; and (ii) the Dense-and-Sparse decomposition that stores outliers and sensitive weight values in an efficient sparse format.
arXiv Detail & Related papers (2023-06-13T08:57:54Z) - LLM-QAT: Data-Free Quantization Aware Training for Large Language Models [38.76165207636793]
We propose a data-free distillation method that leverages generations produced by the pre-trained model.
In addition to quantizing weights and activations, we also quantize the KV cache, which is critical for increasing throughput.
We experiment with LLaMA models of sizes 7B, 13B, and 30B, at quantization levels down to 4-bits.
arXiv Detail & Related papers (2023-05-29T05:22:11Z) - Modular Quantization-Aware Training for 6D Object Pose Estimation [52.9436648014338]
Edge applications demand efficient 6D object pose estimation on resource-constrained embedded platforms.
We introduce Modular Quantization-Aware Training (MQAT), an adaptive and mixed-precision quantization-aware training strategy.
MQAT guides a systematic gradated modular quantization sequence and determines module-specific bit precisions, leading to quantized models that outperform those produced by state-of-the-art uniform and mixed-precision quantization techniques.
arXiv Detail & Related papers (2023-03-12T21:01:54Z) - Q-Diffusion: Quantizing Diffusion Models [52.978047249670276]
Post-training quantization (PTQ) is considered a go-to compression method for other tasks.
We propose a novel PTQ method specifically tailored towards the unique multi-timestep pipeline and model architecture.
We show that our proposed method is able to quantize full-precision unconditional diffusion models into 4-bit while maintaining comparable performance.
arXiv Detail & Related papers (2023-02-08T19:38:59Z) - Hyperspherical Quantization: Toward Smaller and More Accurate Models [17.154801913113566]
Vector quantization aims at reducing the model size by indexing model weights with full-precision embeddings.
Binary and other low-precision quantization methods can reduce the model size up to 32$times$, however, at the cost of a considerable accuracy drop.
We propose an efficient framework for ternary quantization to produce smaller and more accurate compressed models.
arXiv Detail & Related papers (2022-12-24T04:42:15Z) - Vertical Layering of Quantized Neural Networks for Heterogeneous
Inference [57.42762335081385]
We study a new vertical-layered representation of neural network weights for encapsulating all quantized models into a single one.
We can theoretically achieve any precision network for on-demand service while only needing to train and maintain one model.
arXiv Detail & Related papers (2022-12-10T15:57:38Z) - CTMQ: Cyclic Training of Convolutional Neural Networks with Multiple
Quantization Steps [1.3106063755117399]
This paper proposes a training method having multiple cyclic training for achieving enhanced performance in low-bit quantized convolutional neural networks (CNNs)
By using better training ability of the accurate model in an iterative manner, the proposed method can produce enhanced trained weights for the low-bit quantized model in each cycle.
Notably, the training method can advance Top-1 and Top-5 accuracies of the binarized ResNet-18 on the ImageNet dataset by 5.80% and 6.85%, respectively.
arXiv Detail & Related papers (2022-06-26T05:54:12Z) - One Model for All Quantization: A Quantized Network Supporting Hot-Swap
Bit-Width Adjustment [36.75157407486302]
We propose a method to train a model for all quantization that supports diverse bit-widths.
We use wavelet decomposition and reconstruction to increase the diversity of weights.
Our method can achieve accuracy comparable to dedicated models trained at the same precision.
arXiv Detail & Related papers (2021-05-04T08:10:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.