Safety Monitoring of Machine Learning Perception Functions: a Survey
- URL: http://arxiv.org/abs/2412.06869v1
- Date: Mon, 09 Dec 2024 10:58:50 GMT
- Title: Safety Monitoring of Machine Learning Perception Functions: a Survey
- Authors: Raul Sena Ferreira, Joris Guérin, Kevin Delmas, Jérémie Guiochet, Hélène Waeselynck,
- Abstract summary: New dependability challenges arise when Machine Learning predictions are used in safety-critical applications.
The use of fault tolerance mechanisms, such as safety monitors, is essential to ensure the safe behavior of the system.
This paper presents an extensive literature review on safety monitoring of perception functions using ML in a safety-critical context.
- Score: 7.193217430660011
- License:
- Abstract: Machine Learning (ML) models, such as deep neural networks, are widely applied in autonomous systems to perform complex perception tasks. New dependability challenges arise when ML predictions are used in safety-critical applications, like autonomous cars and surgical robots. Thus, the use of fault tolerance mechanisms, such as safety monitors, is essential to ensure the safe behavior of the system despite the occurrence of faults. This paper presents an extensive literature review on safety monitoring of perception functions using ML in a safety-critical context. In this review, we structure the existing literature to highlight key factors to consider when designing such monitors: threat identification, requirements elicitation, detection of failure, reaction, and evaluation. We also highlight the ongoing challenges associated with safety monitoring and suggest directions for future research.
Related papers
- System Safety Monitoring of Learned Components Using Temporal Metric Forecasting [8.76735390039138]
In learning-enabled autonomous systems, safety monitoring of learned components is crucial to ensure their outputs do not lead to system safety violations.
We propose a safety monitoring method based on probabilistic time series forecasting.
We empirically evaluate safety metric and violation prediction accuracy, and inference latency and resource usage of four state-of-the-art models.
arXiv Detail & Related papers (2024-05-21T23:48:26Z) - Highlighting the Safety Concerns of Deploying LLMs/VLMs in Robotics [54.57914943017522]
We highlight the critical issues of robustness and safety associated with integrating large language models (LLMs) and vision-language models (VLMs) into robotics applications.
arXiv Detail & Related papers (2024-02-15T22:01:45Z) - Empowering Autonomous Driving with Large Language Models: A Safety Perspective [82.90376711290808]
This paper explores the integration of Large Language Models (LLMs) into Autonomous Driving systems.
LLMs are intelligent decision-makers in behavioral planning, augmented with a safety verifier shield for contextual safety learning.
We present two key studies in a simulated environment: an adaptive LLM-conditioned Model Predictive Control (MPC) and an LLM-enabled interactive behavior planning scheme with a state machine.
arXiv Detail & Related papers (2023-11-28T03:13:09Z) - Vulnerability of Machine Learning Approaches Applied in IoT-based Smart Grid: A Review [51.31851488650698]
Machine learning (ML) sees an increasing prevalence of being used in the internet-of-things (IoT)-based smart grid.
adversarial distortion injected into the power signal will greatly affect the system's normal control and operation.
It is imperative to conduct vulnerability assessment for MLsgAPPs applied in the context of safety-critical power systems.
arXiv Detail & Related papers (2023-08-30T03:29:26Z) - Leveraging Traceability to Integrate Safety Analysis Artifacts into the
Software Development Process [51.42800587382228]
Safety assurance cases (SACs) can be challenging to maintain during system evolution.
We propose a solution that leverages software traceability to connect relevant system artifacts to safety analysis models.
We elicit design rationales for system changes to help safety stakeholders analyze the impact of system changes on safety.
arXiv Detail & Related papers (2023-07-14T16:03:27Z) - Unifying Evaluation of Machine Learning Safety Monitors [0.0]
runtime monitors have been developed to detect prediction errors and keep the system in a safe state during operations.
This paper introduces three unified safety-oriented metrics, representing the safety benefits of the monitor (Safety Gain) and the remaining safety gaps after using it (Residual Hazard)
Three use-cases (classification, drone landing, and autonomous driving) are used to demonstrate how metrics from the literature can be expressed in terms of the proposed metrics.
arXiv Detail & Related papers (2022-08-31T07:17:42Z) - Inspect, Understand, Overcome: A Survey of Practical Methods for AI
Safety [54.478842696269304]
The use of deep neural networks (DNNs) in safety-critical applications is challenging due to numerous model-inherent shortcomings.
In recent years, a zoo of state-of-the-art techniques aiming to address these safety concerns has emerged.
Our paper addresses both machine learning experts and safety engineers.
arXiv Detail & Related papers (2021-04-29T09:54:54Z) - Scalable Synthesis of Verified Controllers in Deep Reinforcement
Learning [0.0]
We propose an automated verification pipeline capable of synthesizing high-quality safety shields.
Our key insight involves separating safety verification from neural controller, using pre-computed verified safety shields to constrain neural controller training.
Experimental results over a range of realistic high-dimensional deep RL benchmarks demonstrate the effectiveness of our approach.
arXiv Detail & Related papers (2021-04-20T19:30:29Z) - Dos and Don'ts of Machine Learning in Computer Security [74.1816306998445]
Despite great potential, machine learning in security is prone to subtle pitfalls that undermine its performance.
We identify common pitfalls in the design, implementation, and evaluation of learning-based security systems.
We propose actionable recommendations to support researchers in avoiding or mitigating the pitfalls where possible.
arXiv Detail & Related papers (2020-10-19T13:09:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.