Covered Forest: Fine-grained generalization analysis of graph neural networks
- URL: http://arxiv.org/abs/2412.07106v1
- Date: Tue, 10 Dec 2024 01:45:59 GMT
- Title: Covered Forest: Fine-grained generalization analysis of graph neural networks
- Authors: Antonis Vasileiou, Ben Finkelshtein, Floris Geerts, Ron Levie, Christopher Morris,
- Abstract summary: We extend recent advances in graph similarity theory to assess the influence of graph structure, aggregation, and loss functions on MPNNs' generalization abilities.
Our empirical study supports our theoretical insights, improving our understanding of MPNNs' generalization properties.
- Score: 14.729609626353112
- License:
- Abstract: The expressive power of message-passing graph neural networks (MPNNs) is reasonably well understood, primarily through combinatorial techniques from graph isomorphism testing. However, MPNNs' generalization abilities -- making meaningful predictions beyond the training set -- remain less explored. Current generalization analyses often overlook graph structure, limit the focus to specific aggregation functions, and assume the impractical, hard-to-optimize $0$-$1$ loss function. Here, we extend recent advances in graph similarity theory to assess the influence of graph structure, aggregation, and loss functions on MPNNs' generalization abilities. Our empirical study supports our theoretical insights, improving our understanding of MPNNs' generalization properties.
Related papers
- A Manifold Perspective on the Statistical Generalization of Graph Neural Networks [84.01980526069075]
We take a manifold perspective to establish the statistical generalization theory of GNNs on graphs sampled from a manifold in the spectral domain.
We prove that the generalization bounds of GNNs decrease linearly with the size of the graphs in the logarithmic scale, and increase linearly with the spectral continuity constants of the filter functions.
arXiv Detail & Related papers (2024-06-07T19:25:02Z) - Advective Diffusion Transformers for Topological Generalization in Graph
Learning [69.2894350228753]
We show how graph diffusion equations extrapolate and generalize in the presence of varying graph topologies.
We propose a novel graph encoder backbone, Advective Diffusion Transformer (ADiT), inspired by advective graph diffusion equations.
arXiv Detail & Related papers (2023-10-10T08:40:47Z) - What functions can Graph Neural Networks compute on random graphs? The
role of Positional Encoding [0.0]
We aim to deepen the theoretical understanding of Graph Neural Networks (GNNs) on large graphs, with a focus on their expressive power.
Recently, several works showed that, on very general random graphs models, GNNs converge to certains functions as the number of nodes grows.
arXiv Detail & Related papers (2023-05-24T07:09:53Z) - On the Expressiveness and Generalization of Hypergraph Neural Networks [77.65788763444877]
This extended abstract describes a framework for analyzing the expressiveness, learning, and (structural) generalization of hypergraph neural networks (HyperGNNs)
Specifically, we focus on how HyperGNNs can learn from finite datasets and generalize structurally to graph reasoning problems of arbitrary input sizes.
arXiv Detail & Related papers (2023-03-09T18:42:18Z) - MentorGNN: Deriving Curriculum for Pre-Training GNNs [61.97574489259085]
We propose an end-to-end model named MentorGNN that aims to supervise the pre-training process of GNNs across graphs.
We shed new light on the problem of domain adaption on relational data (i.e., graphs) by deriving a natural and interpretable upper bound on the generalization error of the pre-trained GNNs.
arXiv Detail & Related papers (2022-08-21T15:12:08Z) - Representation Power of Graph Neural Networks: Improved Expressivity via
Algebraic Analysis [124.97061497512804]
We show that standard Graph Neural Networks (GNNs) produce more discriminative representations than the Weisfeiler-Lehman (WL) algorithm.
We also show that simple convolutional architectures with white inputs, produce equivariant features that count the closed paths in the graph.
arXiv Detail & Related papers (2022-05-19T18:40:25Z) - Stability and Generalization Capabilities of Message Passing Graph
Neural Networks [4.691259009382681]
We study the generalization capabilities of MPNNs in graph classification.
We derive a non-asymptotic bound on the generalization gap between the empirical and statistical loss.
This is proven by showing that a MPNN, applied on a graph, approximates the MPNN applied on the geometric model that the graph discretizes.
arXiv Detail & Related papers (2022-02-01T18:37:53Z) - Learning Theory Can (Sometimes) Explain Generalisation in Graph Neural
Networks [13.518582483147325]
We provide a rigorous analysis of the performance of neural networks in the context of transductive inference.
We show that transductive Rademacher complexity can explain the generalisation properties of graph convolutional networks for block models.
arXiv Detail & Related papers (2021-12-07T20:06:23Z) - Improving Graph Neural Network Expressivity via Subgraph Isomorphism
Counting [63.04999833264299]
"Graph Substructure Networks" (GSN) is a topologically-aware message passing scheme based on substructure encoding.
We show that it is strictly more expressive than the Weisfeiler-Leman (WL) graph isomorphism test.
We perform an extensive evaluation on graph classification and regression tasks and obtain state-of-the-art results in diverse real-world settings.
arXiv Detail & Related papers (2020-06-16T15:30:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.