Taylor Outlier Exposure
- URL: http://arxiv.org/abs/2412.07219v1
- Date: Tue, 10 Dec 2024 06:17:07 GMT
- Title: Taylor Outlier Exposure
- Authors: Kohei Fukuda, Hiroaki Aizawa,
- Abstract summary: Taylor Outlier Exposure (TaylorOE) is an OE-based approach with regularization that allows training on noisy OOD datasets contaminated with ID samples.
We demonstrate that the proposed method consistently outperforms conventional methods and analyze our regularization term to show its effectiveness.
- Score: 0.7673339435080445
- License:
- Abstract: Out-of-distribution (OOD) detection is the task of identifying data sampled from distributions that were not used during training. This task is essential for reliable machine learning and a better understanding of their generalization capabilities. Among OOD detection methods, Outlier Exposure (OE) significantly enhances OOD detection performance and generalization ability by exposing auxiliary OOD data to the model. However, constructing clean auxiliary OOD datasets, uncontaminated by in-distribution (ID) samples, is essential for OE; generally, a noisy OOD dataset contaminated with ID samples negatively impacts OE training dynamics and final detection performance. Furthermore, as dataset scale increases, constructing clean OOD data becomes increasingly challenging and costly. To address these challenges, we propose Taylor Outlier Exposure (TaylorOE), an OE-based approach with regularization that allows training on noisy OOD datasets contaminated with ID samples. Specifically, we represent the OE regularization term as a polynomial function via a Taylor expansion, allowing us to control the regularization strength for ID data in the auxiliary OOD dataset by adjusting the order of Taylor expansion. In our experiments on the OOD detection task with clean and noisy OOD datasets, we demonstrate that the proposed method consistently outperforms conventional methods and analyze our regularization term to show its effectiveness. Our implementation code of TaylorOE is available at \url{https://github.com/fukuchan41/TaylorOE}.
Related papers
- Out-of-Distribution Detection using Synthetic Data Generation [21.612592503592143]
In- and out-of-distribution (OOD) inputs are crucial for reliable deployment of classification systems.
We present a method that harnesses the generative capabilities of Large Language Models (LLMs) to create high-quality synthetic OOD proxies.
arXiv Detail & Related papers (2025-02-05T16:22:09Z) - Can OOD Object Detectors Learn from Foundation Models? [56.03404530594071]
Out-of-distribution (OOD) object detection is a challenging task due to the absence of open-set OOD data.
Inspired by recent advancements in text-to-image generative models, we study the potential of generative models trained on large-scale open-set data to synthesize OOD samples.
We introduce SyncOOD, a simple data curation method that capitalizes on the capabilities of large foundation models.
arXiv Detail & Related papers (2024-09-08T17:28:22Z) - EAT: Towards Long-Tailed Out-of-Distribution Detection [55.380390767978554]
This paper addresses the challenging task of long-tailed OOD detection.
The main difficulty lies in distinguishing OOD data from samples belonging to the tail classes.
We propose two simple ideas: (1) Expanding the in-distribution class space by introducing multiple abstention classes, and (2) Augmenting the context-limited tail classes by overlaying images onto the context-rich OOD data.
arXiv Detail & Related papers (2023-12-14T13:47:13Z) - Out-of-distribution Detection Learning with Unreliable
Out-of-distribution Sources [73.28967478098107]
Out-of-distribution (OOD) detection discerns OOD data where the predictor cannot make valid predictions as in-distribution (ID) data.
It is typically hard to collect real out-of-distribution (OOD) data for training a predictor capable of discerning OOD patterns.
We propose a data generation-based learning method named Auxiliary Task-based OOD Learning (ATOL) that can relieve the mistaken OOD generation.
arXiv Detail & Related papers (2023-11-06T16:26:52Z) - Can Pre-trained Networks Detect Familiar Out-of-Distribution Data? [37.36999826208225]
We study the effect of PT-OOD on the OOD detection performance of pre-trained networks.
We find that the low linear separability of PT-OOD in the feature space heavily degrades the PT-OOD detection performance.
We propose a unique solution to large-scale pre-trained models: Leveraging powerful instance-by-instance discriminative representations of pre-trained models.
arXiv Detail & Related papers (2023-10-02T02:01:00Z) - AUTO: Adaptive Outlier Optimization for Online Test-Time OOD Detection [81.49353397201887]
Out-of-distribution (OOD) detection is crucial to deploying machine learning models in open-world applications.
We introduce a novel paradigm called test-time OOD detection, which utilizes unlabeled online data directly at test time to improve OOD detection performance.
We propose adaptive outlier optimization (AUTO), which consists of an in-out-aware filter, an ID memory bank, and a semantically-consistent objective.
arXiv Detail & Related papers (2023-03-22T02:28:54Z) - Out-of-distribution Detection with Implicit Outlier Transformation [72.73711947366377]
Outlier exposure (OE) is powerful in out-of-distribution (OOD) detection.
We propose a novel OE-based approach that makes the model perform well for unseen OOD situations.
arXiv Detail & Related papers (2023-03-09T04:36:38Z) - Training OOD Detectors in their Natural Habitats [31.565635192716712]
Out-of-distribution (OOD) detection is important for machine learning models deployed in the wild.
Recent methods use auxiliary outlier data to regularize the model for improved OOD detection.
We propose a novel framework that leverages wild mixture data -- that naturally consists of both ID and OOD samples.
arXiv Detail & Related papers (2022-02-07T15:38:39Z) - Learn what you can't learn: Regularized Ensembles for Transductive
Out-of-distribution Detection [76.39067237772286]
We show that current out-of-distribution (OOD) detection algorithms for neural networks produce unsatisfactory results in a variety of OOD detection scenarios.
This paper studies how such "hard" OOD scenarios can benefit from adjusting the detection method after observing a batch of the test data.
We propose a novel method that uses an artificial labeling scheme for the test data and regularization to obtain ensembles of models that produce contradictory predictions only on the OOD samples in a test batch.
arXiv Detail & Related papers (2020-12-10T16:55:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.