CapGen:An Environment-Adaptive Generator of Adversarial Patches
- URL: http://arxiv.org/abs/2412.07253v1
- Date: Tue, 10 Dec 2024 07:24:24 GMT
- Title: CapGen:An Environment-Adaptive Generator of Adversarial Patches
- Authors: Chaoqun Li, Zhuodong Liu, Huanqian Yan, Hang Su,
- Abstract summary: Adversarial patches, often used to provide physical stealth protection for critical assets, usually neglect the need for visual harmony with the background environment.
We introduce the Camouflaged Adrialversa Pattern Generator (CAPGen), a novel approach that leverages specific base colors from the surrounding environment.
This paper is the first to comprehensively examine the roles played by patterns and colors in the context of adversarial patches.
- Score: 12.042510965650205
- License:
- Abstract: Adversarial patches, often used to provide physical stealth protection for critical assets and assess perception algorithm robustness, usually neglect the need for visual harmony with the background environment, making them easily noticeable. Moreover, existing methods primarily concentrate on improving attack performance, disregarding the intricate dynamics of adversarial patch elements. In this work, we introduce the Camouflaged Adversarial Pattern Generator (CAPGen), a novel approach that leverages specific base colors from the surrounding environment to produce patches that seamlessly blend with their background for superior visual stealthiness while maintaining robust adversarial performance. We delve into the influence of both patterns (i.e., color-agnostic texture information) and colors on the effectiveness of attacks facilitated by patches, discovering that patterns exert a more pronounced effect on performance than colors. Based on these findings, we propose a rapid generation strategy for adversarial patches. This involves updating the colors of high-performance adversarial patches to align with those of the new environment, ensuring visual stealthiness without compromising adversarial impact. This paper is the first to comprehensively examine the roles played by patterns and colors in the context of adversarial patches.
Related papers
- DiffPatch: Generating Customizable Adversarial Patches using Diffusion Model [88.14122962946858]
We propose a novel diffusion-based customizable patch generation framework termed DiffPatch.
Our approach enables users to utilize a reference image as the source, rather than starting from random noise.
We have created a physical adversarial T-shirt dataset, AdvPatch-1K, specifically targeting YOLOv5s.
arXiv Detail & Related papers (2024-12-02T12:30:35Z) - Environmental Matching Attack Against Unmanned Aerial Vehicles Object Detection [37.77615360932841]
Object detection techniques for Unmanned Aerial Vehicles rely on Deep Neural Networks (DNNs)
adversarial patches generated by existing algorithms in the UAV domain pay very little attention to the naturalness of adversarial patches.
We propose a new method named Environmental Matching Attack(EMA) to address the issue of optimizing the adversarial patch under the constraints of color.
arXiv Detail & Related papers (2024-05-13T09:56:57Z) - Towards Robust Image Stitching: An Adaptive Resistance Learning against
Compatible Attacks [66.98297584796391]
Image stitching seamlessly integrates images captured from varying perspectives into a single wide field-of-view image.
Given a pair of captured images, subtle perturbations and distortions which go unnoticed by the human visual system tend to attack the correspondence matching.
This paper presents the first attempt to improve the robustness of image stitching against adversarial attacks.
arXiv Detail & Related papers (2024-02-25T02:36:33Z) - ZoomNeXt: A Unified Collaborative Pyramid Network for Camouflaged Object Detection [70.11264880907652]
Recent object (COD) attempts to segment objects visually blended into their surroundings, which is extremely complex and difficult in real-world scenarios.
We propose an effective unified collaborative pyramid network that mimics human behavior when observing vague images and camouflaged zooming in and out.
Our framework consistently outperforms existing state-of-the-art methods in image and video COD benchmarks.
arXiv Detail & Related papers (2023-10-31T06:11:23Z) - Generating Transferable and Stealthy Adversarial Patch via
Attention-guided Adversarial Inpainting [12.974292128917222]
We propose an innovative two-stage adversarial patch attack called Adv-Inpainting.
In the first stage, we extract style features and identity features from the attacker and target faces, respectively.
The proposed layer can adaptively fuse identity and style embeddings by fully exploiting priority contextual information.
In the second stage, we design an Adversarial Patch Refinement Network (APR-Net) with a novel boundary variance loss.
arXiv Detail & Related papers (2023-08-10T03:44:10Z) - Adv-Attribute: Inconspicuous and Transferable Adversarial Attack on Face
Recognition [111.1952945740271]
Adversarial Attributes (Adv-Attribute) is designed to generate inconspicuous and transferable attacks on face recognition.
Experiments on the FFHQ and CelebA-HQ datasets show that the proposed Adv-Attribute method achieves the state-of-the-art attacking success rates.
arXiv Detail & Related papers (2022-10-13T09:56:36Z) - Inconspicuous Adversarial Patches for Fooling Image Recognition Systems
on Mobile Devices [8.437172062224034]
A variant of adversarial examples, called adversarial patch, draws researchers' attention due to its strong attack abilities.
We propose an approach to generate adversarial patches with one single image.
Our approach shows the strong attack abilities in white-box settings and the excellent transferability in black-box settings.
arXiv Detail & Related papers (2021-06-29T09:39:34Z) - Generating Adversarial yet Inconspicuous Patches with a Single Image [15.217367754000913]
We propose an approach to gen-erate adversarial yet inconspicuous patches with onesingle image.
In our approach, adversarial patches areproduced in a coarse-to-fine way with multiple scalesof generators and discriminators.
Our ap-proach shows strong attacking ability in both the white-box and black-box setting.
arXiv Detail & Related papers (2020-09-21T11:56:01Z) - Bias-based Universal Adversarial Patch Attack for Automatic Check-out [59.355948824578434]
Adversarial examples are inputs with imperceptible perturbations that easily misleading deep neural networks(DNNs)
Existing strategies failed to generate adversarial patches with strong generalization ability.
This paper proposes a bias-based framework to generate class-agnostic universal adversarial patches with strong generalization ability.
arXiv Detail & Related papers (2020-05-19T07:38:54Z) - Adversarial Training against Location-Optimized Adversarial Patches [84.96938953835249]
adversarial patches: clearly visible, but adversarially crafted rectangular patches in images.
We first devise a practical approach to obtain adversarial patches while actively optimizing their location within the image.
We apply adversarial training on these location-optimized adversarial patches and demonstrate significantly improved robustness on CIFAR10 and GTSRB.
arXiv Detail & Related papers (2020-05-05T16:17:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.