Goal-Driven Reasoning in DatalogMTL with Magic Sets
- URL: http://arxiv.org/abs/2412.07259v2
- Date: Mon, 23 Dec 2024 02:24:15 GMT
- Title: Goal-Driven Reasoning in DatalogMTL with Magic Sets
- Authors: Shaoyu Wang, Kaiyue Zhao, Dongliang Wei, Przemysław Andrzej Wałęga, Dingmin Wang, Hongming Cai, Pan Hu,
- Abstract summary: DatalogMTL is a powerful rule-based language for temporal reasoning.
We introduce a new reasoning method for DatalogMTL which exploits the magic sets technique.
We implement this approach and evaluate it on several publicly available benchmarks.
- Score: 4.885086628404422
- License:
- Abstract: DatalogMTL is a powerful rule-based language for temporal reasoning. Due to its high expressive power and flexible modeling capabilities, it is suitable for a wide range of applications, including tasks from industrial and financial sectors. However, due its high computational complexity, practical reasoning in DatalogMTL is highly challenging. To address this difficulty, we introduce a new reasoning method for DatalogMTL which exploits the magic sets technique -- a rewriting approach developed for (non-temporal) Datalog to simulate top-down evaluation with bottom-up reasoning. We implement this approach and evaluate it on several publicly available benchmarks, showing that the proposed approach significantly and consistently outperforms performance of the state-of-the-art reasoning techniques.
Related papers
- JustLogic: A Comprehensive Benchmark for Evaluating Deductive Reasoning in Large Language Models [51.99046112135311]
We introduce JustLogic, a synthetically generated deductive reasoning benchmark for rigorous evaluation of Large Language Models.
JustLogic is highly complex, capable of generating a diverse range of linguistic patterns, vocabulary, and argument structures.
Our experimental results reveal that most state-of-the-art (SOTA) LLMs perform significantly worse than the human average.
arXiv Detail & Related papers (2025-01-24T15:49:10Z) - Enhancing Logical Reasoning in Large Language Models through Graph-based Synthetic Data [53.433309883370974]
This work explores the potential and limitations of using graph-based synthetic reasoning data as training signals to enhance Large Language Models' reasoning capabilities.
Our experiments, conducted on two established natural language reasoning tasks, demonstrate that supervised fine-tuning with synthetic graph-based reasoning data effectively enhances LLMs' reasoning performance without compromising their effectiveness on other standard evaluation benchmarks.
arXiv Detail & Related papers (2024-09-19T03:39:09Z) - Reliable Reasoning Beyond Natural Language [0.047888359248129786]
Large Language models (LLMs) often exhibit limitations in their ability to reason reliably and flexibly.
We propose a neurosymbolic approach that prompts LLMs to extract and encode all relevant information from a problem statement as logical code statements.
We then use a logic programming language (Prolog) to conduct the iterative computations of explicit deductive reasoning.
arXiv Detail & Related papers (2024-07-16T04:34:18Z) - MindStar: Enhancing Math Reasoning in Pre-trained LLMs at Inference Time [51.5039731721706]
MindStar is a purely inference-based searching method for large language models.
It formulates reasoning tasks as searching problems and proposes two search ideas to identify the optimal reasoning paths.
It significantly enhances the reasoning abilities of open-source models, such as Llama-2-13B and Mistral-7B, and achieves comparable performance to GPT-3.5 and Grok-1.
arXiv Detail & Related papers (2024-05-25T15:07:33Z) - Ontological Reasoning over Shy and Warded Datalog$+/-$ for
Streaming-based Architectures (technical report) [6.689509223124273]
Datalog-based ontological reasoning systems adopt languages, often shared under the collective name of Datalog$ +/-$.
In this paper, we focus on two extremely promising, expressive, and tractable languages, namely, Shy and Warded Datalog$ +/-$.
We leverage their theoretical underpinnings to introduce novel reasoning techniques, technically, "chase variants", that are particularly fit for efficient reasoning in streaming-based architectures.
We then implement them in Vadalog, our reference streaming-based engine, to efficiently solve ontological reasoning tasks over real-world settings.
arXiv Detail & Related papers (2023-11-20T23:27:43Z) - InfiMM-Eval: Complex Open-Ended Reasoning Evaluation For Multi-Modal
Large Language Models [50.03163753638256]
Multi-modal Large Language Models (MLLMs) are increasingly prominent in the field of artificial intelligence.
Our benchmark comprises three key reasoning categories: deductive, abductive, and analogical reasoning.
We evaluate a selection of representative MLLMs using this rigorously developed open-ended multi-step elaborate reasoning benchmark.
arXiv Detail & Related papers (2023-11-20T07:06:31Z) - MuSR: Testing the Limits of Chain-of-thought with Multistep Soft Reasoning [63.80739044622555]
We introduce MuSR, a dataset for evaluating language models on soft reasoning tasks specified in a natural language narrative.
This dataset has two crucial features. First, it is created through a novel neurosymbolic synthetic-to-natural generation algorithm.
Second, our dataset instances are free text narratives corresponding to real-world domains of reasoning.
arXiv Detail & Related papers (2023-10-24T17:59:20Z) - Seminaive Materialisation in DatalogMTL [10.850687097496373]
DatalogMTL is an extension of Datalog with metric temporal operators.
We propose a materialisation-based procedure to minimise redundant computation.
Our experiments show that our optimised seminaive strategy for DatalogMTL is able to significantly reduce materialisation times.
arXiv Detail & Related papers (2022-08-15T10:04:44Z) - Linear Temporal Logic Modulo Theories over Finite Traces (Extended
Version) [72.38188258853155]
This paper studies Linear Temporal Logic over Finite Traces (LTLf)
proposition letters are replaced with first-order formulas interpreted over arbitrary theories.
The resulting logic, called Satisfiability Modulo Theories (LTLfMT), is semi-decidable.
arXiv Detail & Related papers (2022-04-28T17:57:33Z) - MeTeoR: Practical Reasoning in Datalog with Metric Temporal Operators [12.145849273069627]
We present a novel approach for practical reasoning in DatalogMTL which combines materialisation (a.k.a. forward chaining) with automata-based techniques.
MeTeoR is a scalable system which enables reasoning over complex temporal rules and involving datasets of millions of temporal facts.
arXiv Detail & Related papers (2022-01-12T17:46:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.