PRM: Photometric Stereo based Large Reconstruction Model
- URL: http://arxiv.org/abs/2412.07371v1
- Date: Tue, 10 Dec 2024 10:11:15 GMT
- Title: PRM: Photometric Stereo based Large Reconstruction Model
- Authors: Wenhang Ge, Jiantao Lin, Guibao Shen, Jiawei Feng, Tao Hu, Xinli Xu, Ying-Cong Chen,
- Abstract summary: PRM renders photometric stereo images by varying materials and lighting for the purposes.
To offer enhanced flexibility of images rendering, we incorporate a real-time physically-based rendering (PBR) method and mesh specularization for online images.
- Score: 18.95196627599738
- License:
- Abstract: We propose PRM, a novel photometric stereo based large reconstruction model to reconstruct high-quality meshes with fine-grained local details. Unlike previous large reconstruction models that prepare images under fixed and simple lighting as both input and supervision, PRM renders photometric stereo images by varying materials and lighting for the purposes, which not only improves the precise local details by providing rich photometric cues but also increases the model robustness to variations in the appearance of input images. To offer enhanced flexibility of images rendering, we incorporate a real-time physically-based rendering (PBR) method and mesh rasterization for online images rendering. Moreover, in employing an explicit mesh as our 3D representation, PRM ensures the application of differentiable PBR, which supports the utilization of multiple photometric supervisions and better models the specular color for high-quality geometry optimization. Our PRM leverages photometric stereo images to achieve high-quality reconstructions with fine-grained local details, even amidst sophisticated image appearances. Extensive experiments demonstrate that PRM significantly outperforms other models.
Related papers
- IDArb: Intrinsic Decomposition for Arbitrary Number of Input Views and Illuminations [64.07859467542664]
Capturing geometric and material information from images remains a fundamental challenge in computer vision and graphics.
Traditional optimization-based methods often require hours of computational time to reconstruct geometry, material properties, and environmental lighting from dense multi-view inputs.
We introduce IDArb, a diffusion-based model designed to perform intrinsic decomposition on an arbitrary number of images under varying illuminations.
arXiv Detail & Related papers (2024-12-16T18:52:56Z) - RelitLRM: Generative Relightable Radiance for Large Reconstruction Models [52.672706620003765]
We propose RelitLRM for generating high-quality Gaussian splatting representations of 3D objects under novel illuminations.
Unlike prior inverse rendering methods requiring dense captures and slow optimization, RelitLRM adopts a feed-forward transformer-based model.
We show our sparse-view feed-forward RelitLRM offers competitive relighting results to state-of-the-art dense-view optimization-based baselines.
arXiv Detail & Related papers (2024-10-08T17:40:01Z) - MERLiN: Single-Shot Material Estimation and Relighting for Photometric Stereo [26.032964551717548]
Photometric stereo typically demands intricate data acquisition setups involving multiple light sources to recover surface normals accurately.
We propose MERLiN, an attention-based hourglass network that integrates single image-based inverse rendering and relighting within a single unified framework.
arXiv Detail & Related papers (2024-09-01T09:32:03Z) - $R^2$-Mesh: Reinforcement Learning Powered Mesh Reconstruction via Geometry and Appearance Refinement [5.810659946867557]
Mesh reconstruction based on Neural Radiance Fields (NeRF) is popular in a variety of applications such as computer graphics, virtual reality, and medical imaging.
We propose a novel algorithm that progressively generates and optimize meshes from multi-view images.
Our method delivers highly competitive and robust performance in both mesh rendering quality and geometric quality.
arXiv Detail & Related papers (2024-08-19T16:33:17Z) - GTR: Improving Large 3D Reconstruction Models through Geometry and Texture Refinement [51.97726804507328]
We propose a novel approach for 3D mesh reconstruction from multi-view images.
Our method takes inspiration from large reconstruction models that use a transformer-based triplane generator and a Neural Radiance Field (NeRF) model trained on multi-view images.
arXiv Detail & Related papers (2024-06-09T05:19:24Z) - Spectral Graphormer: Spectral Graph-based Transformer for Egocentric
Two-Hand Reconstruction using Multi-View Color Images [33.70056950818641]
We propose a novel transformer-based framework that reconstructs two high fidelity hands from multi-view RGB images.
We show that our framework is able to produce realistic two-hand reconstructions and demonstrate the generalisation of synthetic-trained models to real data.
arXiv Detail & Related papers (2023-08-21T20:07:02Z) - High-Quality RGB-D Reconstruction via Multi-View Uncalibrated
Photometric Stereo and Gradient-SDF [48.29050063823478]
We present a novel multi-view RGB-D based reconstruction method that tackles camera pose, lighting, albedo, and surface normal estimation.
The proposed method formulates the image rendering process using specific physically-based model(s) and optimize the surface's volumetric quantities on the actual surface.
arXiv Detail & Related papers (2022-10-21T19:09:08Z) - DIB-R++: Learning to Predict Lighting and Material with a Hybrid
Differentiable Renderer [78.91753256634453]
We consider the challenging problem of predicting intrinsic object properties from a single image by exploiting differentiables.
In this work, we propose DIBR++, a hybrid differentiable which supports these effects by combining specularization and ray-tracing.
Compared to more advanced physics-based differentiables, DIBR++ is highly performant due to its compact and expressive model.
arXiv Detail & Related papers (2021-10-30T01:59:39Z) - PaMIR: Parametric Model-Conditioned Implicit Representation for
Image-based Human Reconstruction [67.08350202974434]
We propose Parametric Model-Conditioned Implicit Representation (PaMIR), which combines the parametric body model with the free-form deep implicit function.
We show that our method achieves state-of-the-art performance for image-based 3D human reconstruction in the cases of challenging poses and clothing types.
arXiv Detail & Related papers (2020-07-08T02:26:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.