Generating Knowledge Graphs from Large Language Models: A Comparative Study of GPT-4, LLaMA 2, and BERT
- URL: http://arxiv.org/abs/2412.07412v1
- Date: Tue, 10 Dec 2024 11:05:26 GMT
- Title: Generating Knowledge Graphs from Large Language Models: A Comparative Study of GPT-4, LLaMA 2, and BERT
- Authors: Ahan Bhatt, Nandan Vaghela, Kush Dudhia,
- Abstract summary: This paper introduces a novel approach leveraging large language models (LLMs) to generate Knowledge Graphs (KGs) for GraphRAGs.
We evaluate the models' ability to generate high-quality KGs using metrics such as Precision, Recall, F1-Score, Graph Edit Distance, and Semantic Similarity.
Results demonstrate that GPT-4 achieves superior semantic fidelity and structural accuracy, LLaMA 2 excels in lightweight, domain-specific graphs, and BERT provides insights into challenges in entity-relationship modeling.
- Score: 0.0
- License:
- Abstract: Knowledge Graphs (KGs) are essential for the functionality of GraphRAGs, a form of Retrieval-Augmented Generative Systems (RAGs) that excel in tasks requiring structured reasoning and semantic understanding. However, creating KGs for GraphRAGs remains a significant challenge due to accuracy and scalability limitations of traditional methods. This paper introduces a novel approach leveraging large language models (LLMs) like GPT-4, LLaMA 2 (13B), and BERT to generate KGs directly from unstructured data, bypassing traditional pipelines. Using metrics such as Precision, Recall, F1-Score, Graph Edit Distance, and Semantic Similarity, we evaluate the models' ability to generate high-quality KGs. Results demonstrate that GPT-4 achieves superior semantic fidelity and structural accuracy, LLaMA 2 excels in lightweight, domain-specific graphs, and BERT provides insights into challenges in entity-relationship modeling. This study underscores the potential of LLMs to streamline KG creation and enhance GraphRAG accessibility for real-world applications, while setting a foundation for future advancements.
Related papers
- GLTW: Joint Improved Graph Transformer and LLM via Three-Word Language for Knowledge Graph Completion [52.026016846945424]
We propose a new method called GLTW, which encodes the structural information of KGs and merges it with Large Language Models.
Specifically, we introduce an improved Graph Transformer (iGT) that effectively encodes subgraphs with both local and global structural information.
Also, we develop a subgraph-based multi-classification training objective, using all entities within KG as classification objects, to boost learning efficiency.
arXiv Detail & Related papers (2025-02-17T06:02:59Z) - GFM-RAG: Graph Foundation Model for Retrieval Augmented Generation [84.41557981816077]
We introduce GFM-RAG, a novel graph foundation model (GFM) for retrieval augmented generation.
GFM-RAG is powered by an innovative graph neural network that reasons over graph structure to capture complex query-knowledge relationships.
It achieves state-of-the-art performance while maintaining efficiency and alignment with neural scaling laws.
arXiv Detail & Related papers (2025-02-03T07:04:29Z) - LEGO-GraphRAG: Modularizing Graph-based Retrieval-Augmented Generation for Design Space Exploration [17.514586423233872]
We propose LEGO-GraphRAG, a modular framework that enables fine-grained decomposition of the GraphRAG workflow.
Our framework facilitates comprehensive empirical studies of GraphRAG on large-scale real-world graphs and diverse query sets.
arXiv Detail & Related papers (2024-11-06T15:32:28Z) - Simple Is Effective: The Roles of Graphs and Large Language Models in Knowledge-Graph-Based Retrieval-Augmented Generation [9.844598565914055]
Large Language Models (LLMs) demonstrate strong reasoning abilities but face limitations such as hallucinations and outdated knowledge.
We introduce SubgraphRAG, extending the Knowledge Graph (KG)-based Retrieval-Augmented Generation (RAG) framework that retrieves subgraphs.
Our approach innovatively integrates a lightweight multilayer perceptron with a parallel triple-scoring mechanism for efficient and flexible subgraph retrieval.
arXiv Detail & Related papers (2024-10-28T04:39:32Z) - A Pure Transformer Pretraining Framework on Text-attributed Graphs [50.833130854272774]
We introduce a feature-centric pretraining perspective by treating graph structure as a prior.
Our framework, Graph Sequence Pretraining with Transformer (GSPT), samples node contexts through random walks.
GSPT can be easily adapted to both node classification and link prediction, demonstrating promising empirical success on various datasets.
arXiv Detail & Related papers (2024-06-19T22:30:08Z) - Knowledge Graph Large Language Model (KG-LLM) for Link Prediction [43.55117421485917]
We introduce the Knowledge Graph Large Language Model (KG-LLM), a novel framework that leverages large language models (LLMs) for knowledge graph tasks.
We first convert structured knowledge graph data into natural language and then use these natural language prompts to fine-tune LLMs.
To show the efficacy of the KG-LLM Framework, we fine-tune three leading LLMs within this framework, including Flan-T5, LLaMa2 and Gemma.
arXiv Detail & Related papers (2024-03-12T04:47:29Z) - ReasoningLM: Enabling Structural Subgraph Reasoning in Pre-trained
Language Models for Question Answering over Knowledge Graph [142.42275983201978]
We propose a subgraph-aware self-attention mechanism to imitate the GNN for performing structured reasoning.
We also adopt an adaptation tuning strategy to adapt the model parameters with 20,000 subgraphs with synthesized questions.
Experiments show that ReasoningLM surpasses state-of-the-art models by a large margin, even with fewer updated parameters and less training data.
arXiv Detail & Related papers (2023-12-30T07:18:54Z) - KG-GPT: A General Framework for Reasoning on Knowledge Graphs Using
Large Language Models [18.20425100517317]
We propose KG-GPT, a framework leveraging large language models for tasks employing knowledge graphs.
KG-GPT comprises three steps: Sentence, Graph Retrieval, and Inference, each aimed at partitioning sentences, retrieving relevant graph components, and deriving logical conclusions.
We evaluate KG-GPT using KG-based fact verification and KGQA benchmarks, with the model showing competitive and robust performance, even outperforming several fully-supervised models.
arXiv Detail & Related papers (2023-10-17T12:51:35Z) - Explainable Sparse Knowledge Graph Completion via High-order Graph
Reasoning Network [111.67744771462873]
This paper proposes a novel explainable model for sparse Knowledge Graphs (KGs)
It combines high-order reasoning into a graph convolutional network, namely HoGRN.
It can not only improve the generalization ability to mitigate the information insufficiency issue but also provide interpretability.
arXiv Detail & Related papers (2022-07-14T10:16:56Z) - Toward Subgraph-Guided Knowledge Graph Question Generation with Graph
Neural Networks [53.58077686470096]
Knowledge graph (KG) question generation (QG) aims to generate natural language questions from KGs and target answers.
In this work, we focus on a more realistic setting where we aim to generate questions from a KG subgraph and target answers.
arXiv Detail & Related papers (2020-04-13T15:43:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.