MO-IOHinspector: Anytime Benchmarking of Multi-Objective Algorithms using IOHprofiler
- URL: http://arxiv.org/abs/2412.07444v1
- Date: Tue, 10 Dec 2024 12:00:53 GMT
- Title: MO-IOHinspector: Anytime Benchmarking of Multi-Objective Algorithms using IOHprofiler
- Authors: Diederick Vermetten, Jeroen Rook, Oliver L. Preuß, Jacob de Nobel, Carola Doerr, Manuel López-Ibañez, Heike Trautmann, Thomas Bäck,
- Abstract summary: We propose a new software tool which uses principles from unbounded archiving as a logging structure.
This leads to a clearer separation between experimental design and subsequent analysis decisions.
- Score: 0.7418044931036347
- License:
- Abstract: Benchmarking is one of the key ways in which we can gain insight into the strengths and weaknesses of optimization algorithms. In sampling-based optimization, considering the anytime behavior of an algorithm can provide valuable insights for further developments. In the context of multi-objective optimization, this anytime perspective is not as widely adopted as in the single-objective context. In this paper, we propose a new software tool which uses principles from unbounded archiving as a logging structure. This leads to a clearer separation between experimental design and subsequent analysis decisions. We integrate this approach as a new Python module into the IOHprofiler framework and demonstrate the benefits of this approach by showcasing the ability to change indicators, aggregations, and ranking procedures during the analysis pipeline.
Related papers
- Unlearning as multi-task optimization: A normalized gradient difference approach with an adaptive learning rate [105.86576388991713]
We introduce a normalized gradient difference (NGDiff) algorithm, enabling us to have better control over the trade-off between the objectives.
We provide a theoretical analysis and empirically demonstrate the superior performance of NGDiff among state-of-the-art unlearning methods on the TOFU and MUSE datasets.
arXiv Detail & Related papers (2024-10-29T14:41:44Z) - Explainable Benchmarking for Iterative Optimization Heuristics [0.8192907805418583]
We introduce the IOH-Xplainer software framework, for analyzing and understanding the performance of various optimization algorithms.
We examine the impact of different algorithmic components and configurations, offering insights into their performance across diverse scenarios.
arXiv Detail & Related papers (2024-01-31T14:02:26Z) - Analyzing and Enhancing the Backward-Pass Convergence of Unrolled
Optimization [50.38518771642365]
The integration of constrained optimization models as components in deep networks has led to promising advances on many specialized learning tasks.
A central challenge in this setting is backpropagation through the solution of an optimization problem, which often lacks a closed form.
This paper provides theoretical insights into the backward pass of unrolled optimization, showing that it is equivalent to the solution of a linear system by a particular iterative method.
A system called Folded Optimization is proposed to construct more efficient backpropagation rules from unrolled solver implementations.
arXiv Detail & Related papers (2023-12-28T23:15:18Z) - Backpropagation of Unrolled Solvers with Folded Optimization [55.04219793298687]
The integration of constrained optimization models as components in deep networks has led to promising advances on many specialized learning tasks.
One typical strategy is algorithm unrolling, which relies on automatic differentiation through the operations of an iterative solver.
This paper provides theoretical insights into the backward pass of unrolled optimization, leading to a system for generating efficiently solvable analytical models of backpropagation.
arXiv Detail & Related papers (2023-01-28T01:50:42Z) - Object Representations as Fixed Points: Training Iterative Refinement
Algorithms with Implicit Differentiation [88.14365009076907]
Iterative refinement is a useful paradigm for representation learning.
We develop an implicit differentiation approach that improves the stability and tractability of training.
arXiv Detail & Related papers (2022-07-02T10:00:35Z) - Deep Equilibrium Assisted Block Sparse Coding of Inter-dependent
Signals: Application to Hyperspectral Imaging [71.57324258813675]
A dataset of inter-dependent signals is defined as a matrix whose columns demonstrate strong dependencies.
A neural network is employed to act as structure prior and reveal the underlying signal interdependencies.
Deep unrolling and Deep equilibrium based algorithms are developed, forming highly interpretable and concise deep-learning-based architectures.
arXiv Detail & Related papers (2022-03-29T21:00:39Z) - IOHexperimenter: Benchmarking Platform for Iterative Optimization
Heuristics [3.6980928405935813]
IOHexperimenter aims at providing an easy-to-use and highly customizable toolbox for benchmarking iterative optimizations.
IOHexperimenter can be used as a stand-alone tool or as part of a benchmarking pipeline that uses other components of IOHprofiler such as IOHanalyzer.
arXiv Detail & Related papers (2021-11-07T13:11:37Z) - Batched Data-Driven Evolutionary Multi-Objective Optimization Based on
Manifold Interpolation [6.560512252982714]
We propose a framework for implementing batched data-driven evolutionary multi-objective optimization.
It is so general that any off-the-shelf evolutionary multi-objective optimization algorithms can be applied in a plug-in manner.
Our proposed framework is featured with a faster convergence and a stronger resilience to various PF shapes.
arXiv Detail & Related papers (2021-09-12T23:54:26Z) - Towards Large Scale Automated Algorithm Design by Integrating Modular
Benchmarking Frameworks [0.9281671380673306]
We present a first proof-of-concept use-case that demonstrates the efficiency of the algorithm framework ParadisEO with the automated algorithm configuration tool irace and the experimental platform IOHprofiler.
Key advantages of our pipeline are fast evaluation times, the possibility to generate rich data sets, and a standardized interface that can be used to benchmark very broad classes of sampling-based optimizations.
arXiv Detail & Related papers (2021-02-12T10:47:00Z) - Bilevel Optimization: Convergence Analysis and Enhanced Design [63.64636047748605]
Bilevel optimization is a tool for many machine learning problems.
We propose a novel stoc-efficientgradient estimator named stoc-BiO.
arXiv Detail & Related papers (2020-10-15T18:09:48Z) - IOHanalyzer: Detailed Performance Analyses for Iterative Optimization
Heuristics [3.967483941966979]
IOHanalyzer is a new user-friendly tool for the analysis, comparison, and visualization of performance data of IOHs.
IOHanalyzer provides detailed statistics about fixed-target running times and about fixed-budget performance of the benchmarked algorithms.
IOHanalyzer can directly process performance data from the main benchmarking platforms.
arXiv Detail & Related papers (2020-07-08T08:20:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.