AHSG: Adversarial Attacks on High-level Semantics in Graph Neural Networks
- URL: http://arxiv.org/abs/2412.07468v1
- Date: Tue, 10 Dec 2024 12:35:37 GMT
- Title: AHSG: Adversarial Attacks on High-level Semantics in Graph Neural Networks
- Authors: Kai Yuan, Xiaobing Pei, Haoran Yang,
- Abstract summary: Graph Neural Networks (GNNs) have garnered significant interest among researchers due to their impressive performance in graph learning tasks.
In existing adversarial attack methods for GNNs, the metric between the attacked graph and the original graph is usually the attack budget or a measure of global graph properties.
We propose a graph structure attack model that ensures the retention of primary semantics.
- Score: 10.087216264788099
- License:
- Abstract: Graph Neural Networks (GNNs) have garnered significant interest among researchers due to their impressive performance in graph learning tasks. However, like other deep neural networks, GNNs are also vulnerable to adversarial attacks. In existing adversarial attack methods for GNNs, the metric between the attacked graph and the original graph is usually the attack budget or a measure of global graph properties. However, we have found that it is possible to generate attack graphs that disrupt the primary semantics even within these constraints. To address this problem, we propose a Adversarial Attacks on High-level Semantics in Graph Neural Networks (AHSG), which is a graph structure attack model that ensures the retention of primary semantics. The latent representations of each node can extract rich semantic information by applying convolutional operations on graph data. These representations contain both task-relevant primary semantic information and task-irrelevant secondary semantic information. The latent representations of same-class nodes with the same primary semantics can fulfill the objective of modifying secondary semantics while preserving the primary semantics. Finally, the latent representations with attack effects is mapped to an attack graph using Projected Gradient Descent (PGD) algorithm. By attacking graph deep learning models with some advanced defense strategies, we validate that AHSG has superior attack effectiveness compared to other attack methods. Additionally, we employ Contextual Stochastic Block Models (CSBMs) as a proxy for the primary semantics to detect the attacked graph, confirming that AHSG almost does not disrupt the original primary semantics of the graph.
Related papers
- Everything Perturbed All at Once: Enabling Differentiable Graph Attacks [61.61327182050706]
Graph neural networks (GNNs) have been shown to be vulnerable to adversarial attacks.
We propose a novel attack method called Differentiable Graph Attack (DGA) to efficiently generate effective attacks.
Compared to the state-of-the-art, DGA achieves nearly equivalent attack performance with 6 times less training time and 11 times smaller GPU memory footprint.
arXiv Detail & Related papers (2023-08-29T20:14:42Z) - Resisting Graph Adversarial Attack via Cooperative Homophilous
Augmentation [60.50994154879244]
Recent studies show that Graph Neural Networks are vulnerable and easily fooled by small perturbations.
In this work, we focus on the emerging but critical attack, namely, Graph Injection Attack.
We propose a general defense framework CHAGNN against GIA through cooperative homophilous augmentation of graph data and model.
arXiv Detail & Related papers (2022-11-15T11:44:31Z) - Model Inversion Attacks against Graph Neural Networks [65.35955643325038]
We study model inversion attacks against Graph Neural Networks (GNNs)
In this paper, we present GraphMI to infer the private training graph data.
Our experimental results show that such defenses are not sufficiently effective and call for more advanced defenses against privacy attacks.
arXiv Detail & Related papers (2022-09-16T09:13:43Z) - A Hard Label Black-box Adversarial Attack Against Graph Neural Networks [25.081630882605985]
We conduct a systematic study on adversarial attacks against GNNs for graph classification via perturbing the graph structure.
We formulate our attack as an optimization problem, whose objective is to minimize the number of edges to be perturbed in a graph while maintaining the high attack success rate.
Our experimental results on three real-world datasets demonstrate that our attack can effectively attack representative GNNs for graph classification with less queries and perturbations.
arXiv Detail & Related papers (2021-08-21T14:01:34Z) - GraphAttacker: A General Multi-Task GraphAttack Framework [4.218118583619758]
Graph Neural Networks (GNNs) have been successfully exploited in graph analysis tasks in many real-world applications.
adversarial samples generated by attackers, which achieved great attack performance with almost imperceptible perturbations.
We propose GraphAttacker, a novel generic graph attack framework that can flexibly adjust the structures and the attack strategies according to the graph analysis tasks.
arXiv Detail & Related papers (2021-01-18T03:06:41Z) - Adversarial Attack on Large Scale Graph [58.741365277995044]
Recent studies have shown that graph neural networks (GNNs) are vulnerable against perturbations due to lack of robustness.
Currently, most works on attacking GNNs are mainly using gradient information to guide the attack and achieve outstanding performance.
We argue that the main reason is that they have to use the whole graph for attacks, resulting in the increasing time and space complexity as the data scale grows.
We present a practical metric named Degree Assortativity Change (DAC) to measure the impacts of adversarial attacks on graph data.
arXiv Detail & Related papers (2020-09-08T02:17:55Z) - Graph Backdoor [53.70971502299977]
We present GTA, the first backdoor attack on graph neural networks (GNNs)
GTA departs in significant ways: it defines triggers as specific subgraphs, including both topological structures and descriptive features.
It can be instantiated for both transductive (e.g., node classification) and inductive (e.g., graph classification) tasks.
arXiv Detail & Related papers (2020-06-21T19:45:30Z) - Adversarial Attack on Hierarchical Graph Pooling Neural Networks [14.72310134429243]
We study the robustness of graph neural networks (GNNs) for graph classification tasks.
In this paper, we propose an adversarial attack framework for the graph classification task.
To the best of our knowledge, this is the first work on the adversarial attack against hierarchical GNN-based graph classification models.
arXiv Detail & Related papers (2020-05-23T16:19:47Z) - Graph Structure Learning for Robust Graph Neural Networks [63.04935468644495]
Graph Neural Networks (GNNs) are powerful tools in representation learning for graphs.
Recent studies show that GNNs are vulnerable to carefully-crafted perturbations, called adversarial attacks.
We propose a general framework Pro-GNN, which can jointly learn a structural graph and a robust graph neural network model.
arXiv Detail & Related papers (2020-05-20T17:07:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.