Offline Multi-Agent Reinforcement Learning via In-Sample Sequential Policy Optimization
- URL: http://arxiv.org/abs/2412.07639v2
- Date: Wed, 18 Dec 2024 09:04:32 GMT
- Title: Offline Multi-Agent Reinforcement Learning via In-Sample Sequential Policy Optimization
- Authors: Zongkai Liu, Qian Lin, Chao Yu, Xiawei Wu, Yile Liang, Donghui Li, Xuetao Ding,
- Abstract summary: offline Multi-Agent Reinforcement Learning (MARL) is an emerging field that aims to learn optimal multi-agent policies from pre-collected datasets.
In this work, we revisit the existing offline MARL methods and show that in certain scenarios they can be problematic.
We propose a new offline MARL algorithm, named In-Sample Sequential Policy Optimization (InSPO)
- Score: 8.877649895977479
- License:
- Abstract: Offline Multi-Agent Reinforcement Learning (MARL) is an emerging field that aims to learn optimal multi-agent policies from pre-collected datasets. Compared to single-agent case, multi-agent setting involves a large joint state-action space and coupled behaviors of multiple agents, which bring extra complexity to offline policy optimization. In this work, we revisit the existing offline MARL methods and show that in certain scenarios they can be problematic, leading to uncoordinated behaviors and out-of-distribution (OOD) joint actions. To address these issues, we propose a new offline MARL algorithm, named In-Sample Sequential Policy Optimization (InSPO). InSPO sequentially updates each agent's policy in an in-sample manner, which not only avoids selecting OOD joint actions but also carefully considers teammates' updated policies to enhance coordination. Additionally, by thoroughly exploring low-probability actions in the behavior policy, InSPO can well address the issue of premature convergence to sub-optimal solutions. Theoretically, we prove InSPO guarantees monotonic policy improvement and converges to quantal response equilibrium (QRE). Experimental results demonstrate the effectiveness of our method compared to current state-of-the-art offline MARL methods.
Related papers
- ComaDICE: Offline Cooperative Multi-Agent Reinforcement Learning with Stationary Distribution Shift Regularization [11.620274237352026]
offline reinforcement learning (RL) has garnered significant attention for its ability to learn effective policies from pre-collected datasets.
MARL presents additional challenges due to the large joint state-action space and the complexity of multi-agent behaviors.
We introduce a regularizer in the space of stationary distributions to better handle distributional shift.
arXiv Detail & Related papers (2024-10-02T18:56:10Z) - Coordination Failure in Cooperative Offline MARL [3.623224034411137]
We focus on coordination failure and investigate the role of joint actions in multi-agent policy gradients with offline data.
By using two-player games as an analytical tool, we demonstrate a simple yet overlooked failure mode of BRUD-based algorithms.
We propose an approach to mitigate such failure, by prioritising samples from the dataset based on joint-action similarity.
arXiv Detail & Related papers (2024-07-01T14:51:29Z) - AlberDICE: Addressing Out-Of-Distribution Joint Actions in Offline
Multi-Agent RL via Alternating Stationary Distribution Correction Estimation [65.4532392602682]
One of the main challenges in offline Reinforcement Learning (RL) is the distribution shift that arises from the learned policy deviating from the data collection policy.
This is often addressed by avoiding out-of-distribution (OOD) actions during policy improvement as their presence can lead to substantial performance degradation.
We introduce AlberDICE, an offline MARL algorithm that performs centralized training of individual agents based on stationary distribution optimization.
arXiv Detail & Related papers (2023-11-03T18:56:48Z) - Learning From Good Trajectories in Offline Multi-Agent Reinforcement
Learning [98.07495732562654]
offline multi-agent reinforcement learning (MARL) aims to learn effective multi-agent policies from pre-collected datasets.
One agent learned by offline MARL often inherits this random policy, jeopardizing the performance of the entire team.
We propose a novel framework called Shared Individual Trajectories (SIT) to address this problem.
arXiv Detail & Related papers (2022-11-28T18:11:26Z) - Mutual Information Regularized Offline Reinforcement Learning [76.05299071490913]
We propose a novel MISA framework to approach offline RL from the perspective of Mutual Information between States and Actions in the dataset.
We show that optimizing this lower bound is equivalent to maximizing the likelihood of a one-step improved policy on the offline dataset.
We introduce 3 different variants of MISA, and empirically demonstrate that tighter mutual information lower bound gives better offline RL performance.
arXiv Detail & Related papers (2022-10-14T03:22:43Z) - Faster Last-iterate Convergence of Policy Optimization in Zero-Sum
Markov Games [63.60117916422867]
This paper focuses on the most basic setting of competitive multi-agent RL, namely two-player zero-sum Markov games.
We propose a single-loop policy optimization method with symmetric updates from both agents, where the policy is updated via the entropy-regularized optimistic multiplicative weights update (OMWU) method.
Our convergence results improve upon the best known complexities, and lead to a better understanding of policy optimization in competitive Markov games.
arXiv Detail & Related papers (2022-10-03T16:05:43Z) - Plan Better Amid Conservatism: Offline Multi-Agent Reinforcement
Learning with Actor Rectification [74.10976684469435]
offline reinforcement learning (RL) algorithms can be transferred to multi-agent settings directly.
We propose a simple yet effective method, Offline Multi-Agent RL with Actor Rectification (OMAR), to tackle this critical challenge.
OMAR significantly outperforms strong baselines with state-of-the-art performance in multi-agent continuous control benchmarks.
arXiv Detail & Related papers (2021-11-22T13:27:42Z) - Trust Region Policy Optimisation in Multi-Agent Reinforcement Learning [25.027143431992755]
Trust region methods rigorously enabled reinforcement learning (RL) agents to learn monotonically improving policies, leading to superior performance on a variety of tasks.
Unfortunately, when it comes to multi-agent reinforcement learning (MARL), the property of monotonic improvement may not simply apply.
In this paper, we extend the theory of trust region learning to MARL. Central to our findings are the multi-agent advantage decomposition lemma and the sequential policy update scheme.
Based on these, we develop Heterogeneous-Agent Trust Region Policy optimisation (HATPRO) and Heterogeneous-Agent Proximal Policy optimisation (
arXiv Detail & Related papers (2021-09-23T09:44:35Z) - Multi-Objective SPIBB: Seldonian Offline Policy Improvement with Safety
Constraints in Finite MDPs [71.47895794305883]
We study the problem of Safe Policy Improvement (SPI) under constraints in the offline Reinforcement Learning setting.
We present an SPI for this RL setting that takes into account the preferences of the algorithm's user for handling the trade-offs for different reward signals.
arXiv Detail & Related papers (2021-05-31T21:04:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.