GEXIA: Granularity Expansion and Iterative Approximation for Scalable Multi-grained Video-language Learning
- URL: http://arxiv.org/abs/2412.07704v1
- Date: Tue, 10 Dec 2024 17:50:53 GMT
- Title: GEXIA: Granularity Expansion and Iterative Approximation for Scalable Multi-grained Video-language Learning
- Authors: Yicheng Wang, Zhikang Zhang, Jue Wang, David Fan, Zhenlin Xu, Linda Liu, Xiang Hao, Vimal Bhat, Xinyu Li,
- Abstract summary: We introduce a Granularity EXpansion (GEX) method with Integration and Compression operations to expand the granularity of a single-grained dataset.
To better model multi-grained data, we introduce an Iterative Approximation Module (IAM) which embeds multi-grained videos and texts into a unified, low-dimensional semantic space.
We evaluate our work on three categories of video tasks across seven benchmark datasets, showcasing state-of-the-art or comparable performance.
- Score: 20.210972863275924
- License:
- Abstract: In various video-language learning tasks, the challenge of achieving cross-modality alignment with multi-grained data persists. We propose a method to tackle this challenge from two crucial perspectives: data and modeling. Given the absence of a multi-grained video-text pretraining dataset, we introduce a Granularity EXpansion (GEX) method with Integration and Compression operations to expand the granularity of a single-grained dataset. To better model multi-grained data, we introduce an Iterative Approximation Module (IAM), which embeds multi-grained videos and texts into a unified, low-dimensional semantic space while preserving essential information for cross-modal alignment. Furthermore, GEXIA is highly scalable with no restrictions on the number of video-text granularities for alignment. We evaluate our work on three categories of video tasks across seven benchmark datasets, showcasing state-of-the-art or comparable performance. Remarkably, our model excels in tasks involving long-form video understanding, even though the pretraining dataset only contains short video clips.
Related papers
- MultiVENT 2.0: A Massive Multilingual Benchmark for Event-Centric Video Retrieval [57.891157692501345]
$textbfMultiVENT 2.0$ is a large-scale, multilingual event-centric video retrieval benchmark.
It features a collection of more than 218,000 news videos and 3,906 queries targeting specific world events.
Preliminary results show that state-of-the-art vision-language models struggle significantly with this task.
arXiv Detail & Related papers (2024-10-15T13:56:34Z) - VIMI: Grounding Video Generation through Multi-modal Instruction [89.90065445082442]
Existing text-to-video diffusion models rely solely on text-only encoders for their pretraining.
We construct a large-scale multimodal prompt dataset by employing retrieval methods to pair in-context examples with the given text prompts.
We finetune the model from the first stage on three video generation tasks, incorporating multi-modal instructions.
arXiv Detail & Related papers (2024-07-08T18:12:49Z) - Scaling Up Video Summarization Pretraining with Large Language Models [73.74662411006426]
We introduce an automated and scalable pipeline for generating a large-scale video summarization dataset.
We analyze the limitations of existing approaches and propose a new video summarization model that effectively addresses them.
Our work also presents a new benchmark dataset that contains 1200 long videos each with high-quality summaries annotated by professionals.
arXiv Detail & Related papers (2024-04-04T11:59:06Z) - InternVid: A Large-scale Video-Text Dataset for Multimodal Understanding
and Generation [90.71796406228265]
InternVid is a large-scale video-centric multimodal dataset that enables learning powerful and transferable video-text representations.
The InternVid dataset contains over 7 million videos lasting nearly 760K hours, yielding 234M video clips accompanied by detailed descriptions of total 4.1B words.
arXiv Detail & Related papers (2023-07-13T17:58:32Z) - VALUE: A Multi-Task Benchmark for Video-and-Language Understanding
Evaluation [124.02278735049235]
VALUE benchmark aims to cover a broad range of video genres, video lengths, data volumes, and task difficulty levels.
We evaluate various baseline methods with and without large-scale VidL pre-training.
The significant gap between our best model and human performance calls for future study for advanced VidL models.
arXiv Detail & Related papers (2021-06-08T18:34:21Z) - Video Understanding as Machine Translation [53.59298393079866]
We tackle a wide variety of downstream video understanding tasks by means of a single unified framework.
We report performance gains over the state-of-the-art on several downstream tasks including video classification (EPIC-Kitchens), question answering (TVQA), captioning (TVC, YouCook2, and MSR-VTT)
arXiv Detail & Related papers (2020-06-12T14:07:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.