Solving the Poisson Equation with Dirichlet data by shallow ReLU$^α$-networks: A regularity and approximation perspective
- URL: http://arxiv.org/abs/2412.07728v1
- Date: Tue, 10 Dec 2024 18:24:46 GMT
- Title: Solving the Poisson Equation with Dirichlet data by shallow ReLU$^α$-networks: A regularity and approximation perspective
- Authors: Malhar Vaishampayan, Stephan Wojtowytsch,
- Abstract summary: We analyze the capacity of neural networks to approximate solutions to an elliptic PDE.
Our focus is on the Laplace operator with Dirichlet boundary condition on a half space.
- Score: 0.0
- License:
- Abstract: For several classes of neural PDE solvers (Deep Ritz, PINNs, DeepONets), the ability to approximate the solution or solution operator to a partial differential equation (PDE) hinges on the abilitiy of a neural network to approximate the solution in the spatial variables. We analyze the capacity of neural networks to approximate solutions to an elliptic PDE assuming that the boundary condition can be approximated efficiently. Our focus is on the Laplace operator with Dirichlet boundary condition on a half space and on neural networks with a single hidden layer and an activation function that is a power of the popular ReLU activation function.
Related papers
- Solving Poisson Equations using Neural Walk-on-Spheres [80.1675792181381]
We propose Neural Walk-on-Spheres (NWoS), a novel neural PDE solver for the efficient solution of high-dimensional Poisson equations.
We demonstrate the superiority of NWoS in accuracy, speed, and computational costs.
arXiv Detail & Related papers (2024-06-05T17:59:22Z) - A Mean-Field Analysis of Neural Stochastic Gradient Descent-Ascent for Functional Minimax Optimization [90.87444114491116]
This paper studies minimax optimization problems defined over infinite-dimensional function classes of overparametricized two-layer neural networks.
We address (i) the convergence of the gradient descent-ascent algorithm and (ii) the representation learning of the neural networks.
Results show that the feature representation induced by the neural networks is allowed to deviate from the initial one by the magnitude of $O(alpha-1)$, measured in terms of the Wasserstein distance.
arXiv Detail & Related papers (2024-04-18T16:46:08Z) - Global Convergence of Deep Galerkin and PINNs Methods for Solving
Partial Differential Equations [0.0]
A variety of deep learning methods have been developed to try and solve high-dimensional PDEs by approximating the solution using a neural network.
We prove global convergence for one of the commonly-used deep learning algorithms for solving PDEs, the Deep Galerkin MethodDGM.
arXiv Detail & Related papers (2023-05-10T09:20:11Z) - A Stable and Scalable Method for Solving Initial Value PDEs with Neural
Networks [52.5899851000193]
We develop an ODE based IVP solver which prevents the network from getting ill-conditioned and runs in time linear in the number of parameters.
We show that current methods based on this approach suffer from two key issues.
First, following the ODE produces an uncontrolled growth in the conditioning of the problem, ultimately leading to unacceptably large numerical errors.
arXiv Detail & Related papers (2023-04-28T17:28:18Z) - Neural Basis Functions for Accelerating Solutions to High Mach Euler
Equations [63.8376359764052]
We propose an approach to solving partial differential equations (PDEs) using a set of neural networks.
We regress a set of neural networks onto a reduced order Proper Orthogonal Decomposition (POD) basis.
These networks are then used in combination with a branch network that ingests the parameters of the prescribed PDE to compute a reduced order approximation to the PDE.
arXiv Detail & Related papers (2022-08-02T18:27:13Z) - Solving PDEs on Unknown Manifolds with Machine Learning [8.220217498103315]
This paper presents a mesh-free computational framework and machine learning theory for solving elliptic PDEs on unknown manifold.
We show that the proposed NN solver can robustly generalize the PDE on new data points with errors that are almost identical to generalizations on new data points.
arXiv Detail & Related papers (2021-06-12T03:55:15Z) - dNNsolve: an efficient NN-based PDE solver [62.997667081978825]
We introduce dNNsolve, that makes use of dual Neural Networks to solve ODEs/PDEs.
We show that dNNsolve is capable of solving a broad range of ODEs/PDEs in 1, 2 and 3 spacetime dimensions.
arXiv Detail & Related papers (2021-03-15T19:14:41Z) - Parametric Complexity Bounds for Approximating PDEs with Neural Networks [41.46028070204925]
We prove that when a PDE's coefficients are representable by small neural networks, the parameters required to approximate its solution scalely with the input $d$ are proportional to the parameter counts of the neural networks.
Our proof is based on constructing a neural network which simulates gradient descent in an appropriate space which converges to the solution of the PDE.
arXiv Detail & Related papers (2021-03-03T02:42:57Z) - Multipole Graph Neural Operator for Parametric Partial Differential
Equations [57.90284928158383]
One of the main challenges in using deep learning-based methods for simulating physical systems is formulating physics-based data.
We propose a novel multi-level graph neural network framework that captures interaction at all ranges with only linear complexity.
Experiments confirm our multi-graph network learns discretization-invariant solution operators to PDEs and can be evaluated in linear time.
arXiv Detail & Related papers (2020-06-16T21:56:22Z) - A nonlocal physics-informed deep learning framework using the
peridynamic differential operator [0.0]
We develop a nonlocal PINN approach using the Peridynamic Differential Operator (PDDO)---a numerical method which incorporates long-range interactions and removes spatial derivatives in the governing equations.
Because the PDDO functions can be readily incorporated in the neural network architecture, the nonlocality does not degrade the performance of modern deep-learning algorithms.
We document the superior behavior of nonlocal PINN with respect to local PINN in both solution accuracy and parameter inference.
arXiv Detail & Related papers (2020-05-31T06:26:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.