Repurposing Pre-trained Video Diffusion Models for Event-based Video Interpolation
- URL: http://arxiv.org/abs/2412.07761v1
- Date: Tue, 10 Dec 2024 18:55:30 GMT
- Title: Repurposing Pre-trained Video Diffusion Models for Event-based Video Interpolation
- Authors: Jingxi Chen, Brandon Y. Feng, Haoming Cai, Tianfu Wang, Levi Burner, Dehao Yuan, Cornelia Fermuller, Christopher A. Metzler, Yiannis Aloimonos,
- Abstract summary: Event-based Video Frame Interpolation (EVFI) uses sparse, high-temporal-resolution event measurements as motion guidance.
We adapt pre-trained video diffusion models trained on internet-scale datasets to EVFI.
Our method outperforms existing methods and generalizes across cameras far better than existing approaches.
- Score: 20.689304579898728
- License:
- Abstract: Video Frame Interpolation aims to recover realistic missing frames between observed frames, generating a high-frame-rate video from a low-frame-rate video. However, without additional guidance, the large motion between frames makes this problem ill-posed. Event-based Video Frame Interpolation (EVFI) addresses this challenge by using sparse, high-temporal-resolution event measurements as motion guidance. This guidance allows EVFI methods to significantly outperform frame-only methods. However, to date, EVFI methods have relied on a limited set of paired event-frame training data, severely limiting their performance and generalization capabilities. In this work, we overcome the limited data challenge by adapting pre-trained video diffusion models trained on internet-scale datasets to EVFI. We experimentally validate our approach on real-world EVFI datasets, including a new one that we introduce. Our method outperforms existing methods and generalizes across cameras far better than existing approaches.
Related papers
- Event-Based Video Frame Interpolation With Cross-Modal Asymmetric Bidirectional Motion Fields [39.214857326425204]
Video Frame Interpolation (VFI) aims to generate intermediate video frames between consecutive input frames.
We propose a novel event-based VFI framework with cross-modal asymmetric bidirectional motion field estimation.
Our method shows significant performance improvement over the state-of-the-art VFI methods on various datasets.
arXiv Detail & Related papers (2025-02-19T13:40:43Z) - ZeroSmooth: Training-free Diffuser Adaptation for High Frame Rate Video Generation [81.90265212988844]
We propose a training-free video method for generative video models in a plug-and-play manner.
We transform a video model into a self-cascaded video diffusion model with the designed hidden state correction modules.
Our training-free method is even comparable to trained models supported by huge compute resources and large-scale datasets.
arXiv Detail & Related papers (2024-06-03T00:31:13Z) - Event-based Video Frame Interpolation with Edge Guided Motion Refinement [28.331148083668857]
We introduce an end-to-end E-VFI learning method to efficiently utilize edge features from event signals for motion flow and warping enhancement.
Our method incorporates an Edge Guided Attentive (EGA) module, which rectifies estimated video motion through attentive aggregation.
Experiments on both synthetic and real datasets show the effectiveness of the proposed approach.
arXiv Detail & Related papers (2024-04-28T12:13:34Z) - Video Dynamics Prior: An Internal Learning Approach for Robust Video
Enhancements [83.5820690348833]
We present a framework for low-level vision tasks that does not require any external training data corpus.
Our approach learns neural modules by optimizing over a corrupted sequence, leveraging the weights of the coherence-temporal test and statistics internal statistics.
arXiv Detail & Related papers (2023-12-13T01:57:11Z) - Boost Video Frame Interpolation via Motion Adaptation [73.42573856943923]
Video frame (VFI) is a challenging task that aims to generate intermediate frames between two consecutive frames in a video.
Existing learning-based VFI methods have achieved great success, but they still suffer from limited generalization ability.
We propose a novel optimization-based VFI method that can adapt to unseen motions at test time.
arXiv Detail & Related papers (2023-06-24T10:44:02Z) - A Unified Framework for Event-based Frame Interpolation with Ad-hoc Deblurring in the Wild [72.0226493284814]
We propose a unified framework for event-based frame that performs deblurring ad-hoc.
Our network consistently outperforms previous state-of-the-art methods on frame, single image deblurring, and the joint task of both.
arXiv Detail & Related papers (2023-01-12T18:19:00Z) - E-VFIA : Event-Based Video Frame Interpolation with Attention [8.93294761619288]
We propose an event-based video frame with attention (E-VFIA) as a lightweight kernel-based method.
E-VFIA fuses event information with standard video frames by deformable convolutions to generate high quality interpolated frames.
The proposed method represents events with high temporal resolution and uses a multi-head self-attention mechanism to better encode event-based information.
arXiv Detail & Related papers (2022-09-19T21:40:32Z) - TimeLens: Event-based Video Frame Interpolation [54.28139783383213]
We introduce Time Lens, a novel indicates equal contribution method that leverages the advantages of both synthesis-based and flow-based approaches.
We show an up to 5.21 dB improvement in terms of PSNR over state-of-the-art frame-based and event-based methods.
arXiv Detail & Related papers (2021-06-14T10:33:47Z) - FLAVR: Flow-Agnostic Video Representations for Fast Frame Interpolation [97.99012124785177]
FLAVR is a flexible and efficient architecture that uses 3D space-time convolutions to enable end-to-end learning and inference for video framesupervised.
We demonstrate that FLAVR can serve as a useful self- pretext task for action recognition, optical flow estimation, and motion magnification.
arXiv Detail & Related papers (2020-12-15T18:59:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.