From an Image to a Scene: Learning to Imagine the World from a Million 360 Videos
- URL: http://arxiv.org/abs/2412.07770v1
- Date: Tue, 10 Dec 2024 18:59:44 GMT
- Title: From an Image to a Scene: Learning to Imagine the World from a Million 360 Videos
- Authors: Matthew Wallingford, Anand Bhattad, Aditya Kusupati, Vivek Ramanujan, Matt Deitke, Sham Kakade, Aniruddha Kembhavi, Roozbeh Mottaghi, Wei-Chiu Ma, Ali Farhadi,
- Abstract summary: Three-dimensional (3D) understanding of objects and scenes play a key role in humans' ability to interact with the world.
Large scale synthetic and object-centric 3D datasets have shown to be effective in training models that have 3D understanding of objects.
We introduce 360-1M, a 360 video dataset, and a process for efficiently finding corresponding frames from diverse viewpoints at scale.
- Score: 71.22810401256234
- License:
- Abstract: Three-dimensional (3D) understanding of objects and scenes play a key role in humans' ability to interact with the world and has been an active area of research in computer vision, graphics, and robotics. Large scale synthetic and object-centric 3D datasets have shown to be effective in training models that have 3D understanding of objects. However, applying a similar approach to real-world objects and scenes is difficult due to a lack of large-scale data. Videos are a potential source for real-world 3D data, but finding diverse yet corresponding views of the same content has shown to be difficult at scale. Furthermore, standard videos come with fixed viewpoints, determined at the time of capture. This restricts the ability to access scenes from a variety of more diverse and potentially useful perspectives. We argue that large scale 360 videos can address these limitations to provide: scalable corresponding frames from diverse views. In this paper, we introduce 360-1M, a 360 video dataset, and a process for efficiently finding corresponding frames from diverse viewpoints at scale. We train our diffusion-based model, Odin, on 360-1M. Empowered by the largest real-world, multi-view dataset to date, Odin is able to freely generate novel views of real-world scenes. Unlike previous methods, Odin can move the camera through the environment, enabling the model to infer the geometry and layout of the scene. Additionally, we show improved performance on standard novel view synthesis and 3D reconstruction benchmarks.
Related papers
- You See it, You Got it: Learning 3D Creation on Pose-Free Videos at Scale [42.67300636733286]
We present See3D, a visual-conditional multi-view diffusion model trained on large-scale Internet videos for open-world 3D creation.
The model aims to Get 3D knowledge by solely Seeing the visual contents from the vast and rapidly growing video data.
Our numerical and visual comparisons on single and sparse reconstruction benchmarks show that See3D, trained on cost-effective and scalable video data, achieves notable zero-shot and open-world generation capabilities.
arXiv Detail & Related papers (2024-12-09T17:44:56Z) - Generating 3D-Consistent Videos from Unposed Internet Photos [68.944029293283]
We train a scalable, 3D-aware video model without any 3D annotations such as camera parameters.
Our results suggest that we can scale up scene-level 3D learning using only 2D data such as videos and multiview internet photos.
arXiv Detail & Related papers (2024-11-20T18:58:31Z) - Generative Camera Dolly: Extreme Monocular Dynamic Novel View Synthesis [43.02778060969546]
We propose a controllable monocular dynamic view synthesis pipeline.
Our model does not require depth as input, and does not explicitly model 3D scene geometry.
We believe our framework can potentially unlock powerful applications in rich dynamic scene understanding, perception for robotics, and interactive 3D video viewing experiences for virtual reality.
arXiv Detail & Related papers (2024-05-23T17:59:52Z) - Zero-Shot Multi-Object Scene Completion [59.325611678171974]
We present a 3D scene completion method that recovers the complete geometry of multiple unseen objects in complex scenes from a single RGB-D image.
Our method outperforms the current state-of-the-art on both synthetic and real-world datasets.
arXiv Detail & Related papers (2024-03-21T17:59:59Z) - Multi-View Transformer for 3D Visual Grounding [64.30493173825234]
We propose a Multi-View Transformer (MVT) for 3D visual grounding.
We project the 3D scene to a multi-view space, in which the position information of the 3D scene under different views are modeled simultaneously and aggregated together.
arXiv Detail & Related papers (2022-04-05T12:59:43Z) - Playable Environments: Video Manipulation in Space and Time [98.0621309257937]
We present Playable Environments - a new representation for interactive video generation and manipulation in space and time.
With a single image at inference time, our novel framework allows the user to move objects in 3D while generating a video by providing a sequence of desired actions.
Our method builds an environment state for each frame, which can be manipulated by our proposed action module and decoded back to the image space with volumetric rendering.
arXiv Detail & Related papers (2022-03-03T18:51:05Z) - Recognizing Scenes from Novel Viewpoints [99.90914180489456]
Humans can perceive scenes in 3D from a handful of 2D views. For AI agents, the ability to recognize a scene from any viewpoint given only a few images enables them to efficiently interact with the scene and its objects.
We propose a model which takes as input a few RGB images of a new scene and recognizes the scene from novel viewpoints by segmenting it into semantic categories.
arXiv Detail & Related papers (2021-12-02T18:59:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.