A Taxonomy of Systemic Risks from General-Purpose AI
- URL: http://arxiv.org/abs/2412.07780v1
- Date: Sun, 24 Nov 2024 22:16:18 GMT
- Title: A Taxonomy of Systemic Risks from General-Purpose AI
- Authors: Risto Uuk, Carlos Ignacio Gutierrez, Daniel Guppy, Lode Lauwaert, Atoosa Kasirzadeh, Lucia Velasco, Peter Slattery, Carina Prunkl,
- Abstract summary: We consider systemic risks as large-scale threats that can affect entire societies or economies.
Key sources of systemic risk emerge from knowledge gaps, challenges in recognizing harm, and the unpredictable trajectory of AI development.
This paper contributes to AI safety research by providing a structured groundwork for understanding and addressing the potential large-scale negative societal impacts of general-purpose AI.
- Score: 2.5956465292067867
- License:
- Abstract: Through a systematic review of academic literature, we propose a taxonomy of systemic risks associated with artificial intelligence (AI), in particular general-purpose AI. Following the EU AI Act's definition, we consider systemic risks as large-scale threats that can affect entire societies or economies. Starting with an initial pool of 1,781 documents, we analyzed 86 selected papers to identify 13 categories of systemic risks and 50 contributing sources. Our findings reveal a complex landscape of potential threats, ranging from environmental harm and structural discrimination to governance failures and loss of control. Key sources of systemic risk emerge from knowledge gaps, challenges in recognizing harm, and the unpredictable trajectory of AI development. The taxonomy provides a snapshot of current academic literature on systemic risks. This paper contributes to AI safety research by providing a structured groundwork for understanding and addressing the potential large-scale negative societal impacts of general-purpose AI. The taxonomy can inform policymakers in risk prioritization and regulatory development.
Related papers
- Fully Autonomous AI Agents Should Not be Developed [58.88624302082713]
This paper argues that fully autonomous AI agents should not be developed.
In support of this position, we build from prior scientific literature and current product marketing to delineate different AI agent levels.
Our analysis reveals that risks to people increase with the autonomy of a system.
arXiv Detail & Related papers (2025-02-04T19:00:06Z) - The AI Risk Repository: A Comprehensive Meta-Review, Database, and Taxonomy of Risks From Artificial Intelligence [35.77247656798871]
The risks posed by Artificial Intelligence (AI) are of considerable concern to academics, auditors, policymakers, AI companies, and the public.
A lack of shared understanding of AI risks can impede our ability to comprehensively discuss, research, and react to them.
This paper addresses this gap by creating an AI Risk Repository to serve as a common frame of reference.
arXiv Detail & Related papers (2024-08-14T10:32:06Z) - AI Risk Categorization Decoded (AIR 2024): From Government Regulations to Corporate Policies [88.32153122712478]
We identify 314 unique risk categories organized into a four-tiered taxonomy.
At the highest level, this taxonomy encompasses System & Operational Risks, Content Safety Risks, Societal Risks, and Legal & Rights Risks.
We aim to advance AI safety through information sharing across sectors and the promotion of best practices in risk mitigation for generative AI models and systems.
arXiv Detail & Related papers (2024-06-25T18:13:05Z) - Near to Mid-term Risks and Opportunities of Open-Source Generative AI [94.06233419171016]
Applications of Generative AI are expected to revolutionize a number of different areas, ranging from science & medicine to education.
The potential for these seismic changes has triggered a lively debate about potential risks and resulted in calls for tighter regulation.
This regulation is likely to put at risk the budding field of open-source Generative AI.
arXiv Detail & Related papers (2024-04-25T21:14:24Z) - Control Risk for Potential Misuse of Artificial Intelligence in Science [85.91232985405554]
We aim to raise awareness of the dangers of AI misuse in science.
We highlight real-world examples of misuse in chemical science.
We propose a system called SciGuard to control misuse risks for AI models in science.
arXiv Detail & Related papers (2023-12-11T18:50:57Z) - Managing extreme AI risks amid rapid progress [171.05448842016125]
We describe risks that include large-scale social harms, malicious uses, and irreversible loss of human control over autonomous AI systems.
There is a lack of consensus about how exactly such risks arise, and how to manage them.
Present governance initiatives lack the mechanisms and institutions to prevent misuse and recklessness, and barely address autonomous systems.
arXiv Detail & Related papers (2023-10-26T17:59:06Z) - AI Hazard Management: A framework for the systematic management of root
causes for AI risks [0.0]
This paper introduces the AI Hazard Management (AIHM) framework.
It provides a structured process to systematically identify, assess, and treat AI hazards.
It builds upon an AI hazard list from a comprehensive state-of-the-art analysis.
arXiv Detail & Related papers (2023-10-25T15:55:50Z) - An Overview of Catastrophic AI Risks [38.84933208563934]
This paper provides an overview of the main sources of catastrophic AI risks, which we organize into four categories.
Malicious use, in which individuals or groups intentionally use AIs to cause harm; AI race, in which competitive environments compel actors to deploy unsafe AIs or cede control to AIs.
organizational risks, highlighting how human factors and complex systems can increase the chances of catastrophic accidents.
rogue AIs, describing the inherent difficulty in controlling agents far more intelligent than humans.
arXiv Detail & Related papers (2023-06-21T03:35:06Z) - Quantitative AI Risk Assessments: Opportunities and Challenges [7.35411010153049]
Best way to reduce risks is to implement comprehensive AI lifecycle governance.
Risks can be quantified using metrics from the technical community.
This paper explores these issues, focusing on the opportunities, challenges, and potential impacts of such an approach.
arXiv Detail & Related papers (2022-09-13T21:47:25Z) - Actionable Guidance for High-Consequence AI Risk Management: Towards
Standards Addressing AI Catastrophic Risks [12.927021288925099]
Artificial intelligence (AI) systems can present risks of events with very high or catastrophic consequences at societal scale.
NIST is developing the NIST Artificial Intelligence Risk Management Framework (AI RMF) as voluntary guidance on AI risk assessment and management.
We provide detailed actionable-guidance recommendations focused on identifying and managing risks of events with very high or catastrophic consequences.
arXiv Detail & Related papers (2022-06-17T18:40:41Z) - Overcoming Failures of Imagination in AI Infused System Development and
Deployment [71.9309995623067]
NeurIPS 2020 requested that research paper submissions include impact statements on "potential nefarious uses and the consequences of failure"
We argue that frameworks of harms must be context-aware and consider a wider range of potential stakeholders, system affordances, as well as viable proxies for assessing harms in the widest sense.
arXiv Detail & Related papers (2020-11-26T18:09:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.