On Faster Marginalization with Squared Circuits via Orthonormalization
- URL: http://arxiv.org/abs/2412.07883v2
- Date: Sun, 19 Jan 2025 10:48:35 GMT
- Title: On Faster Marginalization with Squared Circuits via Orthonormalization
- Authors: Lorenzo Loconte, Antonio Vergari,
- Abstract summary: We show how to parameterize squared circuits to ensure they encode already normalized distributions.
We then use this parameterization to devise an algorithm to compute any marginal of squared circuits that is more efficient than a previously known one.
- Score: 5.211074429497916
- License:
- Abstract: Squared tensor networks (TNs) and their generalization as parameterized computational graphs -- squared circuits -- have been recently used as expressive distribution estimators in high dimensions. However, the squaring operation introduces additional complexity when marginalizing variables or computing the partition function, which hinders their usage in machine learning applications. Canonical forms of popular TNs are parameterized via unitary matrices as to simplify the computation of particular marginals, but cannot be mapped to general circuits since these might not correspond to a known TN. Inspired by TN canonical forms, we show how to parameterize squared circuits to ensure they encode already normalized distributions. We then use this parameterization to devise an algorithm to compute any marginal of squared circuits that is more efficient than a previously known one. We conclude by formally showing the proposed parameterization comes with no expressiveness loss for many circuit classes.
Related papers
- Regularized dynamical parametric approximation of stiff evolution problems [0.0]
We study a class of nonlinear parametrizations $ u(t) = Phi(theta(t)) $, where the evolving parameters $theta(t)$ are to be computed.
The primary focus is on tackling the challenges posed by the combination of stiff evolution problems and irregular parametrizations.
arXiv Detail & Related papers (2025-01-21T13:29:36Z) - Refined Risk Bounds for Unbounded Losses via Transductive Priors [58.967816314671296]
We revisit the sequential variants of linear regression with the squared loss, classification problems with hinge loss, and logistic regression.
Our key tools are based on the exponential weights algorithm with carefully chosen transductive priors.
arXiv Detail & Related papers (2024-10-29T00:01:04Z) - Here comes the SU(N): multivariate quantum gates and gradients [1.7809113449965783]
Variational quantum algorithms use non-commuting optimization methods to find optimal parameters for a parametrized quantum circuit.
Here, we propose a gate which fully parameterizes the special unitary group $mathrm(N) gate.
We show that the proposed gate and its optimization satisfy the quantum limit of the unitary group.
arXiv Detail & Related papers (2023-03-20T18:00:04Z) - Symmetric Tensor Networks for Generative Modeling and Constrained
Combinatorial Optimization [72.41480594026815]
Constrained optimization problems abound in industry, from portfolio optimization to logistics.
One of the major roadblocks in solving these problems is the presence of non-trivial hard constraints which limit the valid search space.
In this work, we encode arbitrary integer-valued equality constraints of the form Ax=b, directly into U(1) symmetric networks (TNs) and leverage their applicability as quantum-inspired generative models.
arXiv Detail & Related papers (2022-11-16T18:59:54Z) - Instance-Dependent Generalization Bounds via Optimal Transport [51.71650746285469]
Existing generalization bounds fail to explain crucial factors that drive the generalization of modern neural networks.
We derive instance-dependent generalization bounds that depend on the local Lipschitz regularity of the learned prediction function in the data space.
We empirically analyze our generalization bounds for neural networks, showing that the bound values are meaningful and capture the effect of popular regularization methods during training.
arXiv Detail & Related papers (2022-11-02T16:39:42Z) - FaDIn: Fast Discretized Inference for Hawkes Processes with General
Parametric Kernels [82.53569355337586]
This work offers an efficient solution to temporal point processes inference using general parametric kernels with finite support.
The method's effectiveness is evaluated by modeling the occurrence of stimuli-induced patterns from brain signals recorded with magnetoencephalography (MEG)
Results show that the proposed approach leads to an improved estimation of pattern latency than the state-of-the-art.
arXiv Detail & Related papers (2022-10-10T12:35:02Z) - Training Recurrent Neural Networks by Sequential Least Squares and the
Alternating Direction Method of Multipliers [0.20305676256390928]
We propose the use of convex and twice-differentiable loss and regularization terms for determining optimal hidden network parameters.
We combine sequential least squares with alternating direction multipliers.
The performance of the algorithm is tested in a nonlinear system identification benchmark.
arXiv Detail & Related papers (2021-12-31T08:43:04Z) - General parameter-shift rules for quantum gradients [0.03823356975862005]
Variational quantum algorithms are ubiquitous in applications of noisy intermediate-scale quantum computers.
We show that a general parameter-shift rule can reduce the number of circuit evaluations significantly.
Our approach additionally reproduces reconstructions of the evaluated function up to a chosen order, leading to known generalizations of the Rotosolve algorithm.
arXiv Detail & Related papers (2021-07-26T18:00:02Z) - Understanding Implicit Regularization in Over-Parameterized Single Index
Model [55.41685740015095]
We design regularization-free algorithms for the high-dimensional single index model.
We provide theoretical guarantees for the induced implicit regularization phenomenon.
arXiv Detail & Related papers (2020-07-16T13:27:47Z) - Implicit differentiation of Lasso-type models for hyperparameter
optimization [82.73138686390514]
We introduce an efficient implicit differentiation algorithm, without matrix inversion, tailored for Lasso-type problems.
Our approach scales to high-dimensional data by leveraging the sparsity of the solutions.
arXiv Detail & Related papers (2020-02-20T18:43:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.