From Lived Experience to Insight: Unpacking the Psychological Risks of Using AI Conversational Agents
- URL: http://arxiv.org/abs/2412.07951v2
- Date: Thu, 12 Dec 2024 13:19:29 GMT
- Title: From Lived Experience to Insight: Unpacking the Psychological Risks of Using AI Conversational Agents
- Authors: Mohit Chandra, Suchismita Naik, Denae Ford, Ebele Okoli, Munmun De Choudhury, Mahsa Ershadi, Gonzalo Ramos, Javier Hernandez, Ananya Bhattacharjee, Shahed Warreth, Jina Suh,
- Abstract summary: Our work presents a novel risk taxonomy focusing on psychological risks of using AI gathered through lived experience of individuals.<n>Our taxonomy features 19 AI behaviors, 21 negative psychological impacts, and 15 contexts related to individuals.
- Score: 21.66189033227397
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recent gain in popularity of AI conversational agents has led to their increased use for improving productivity and supporting well-being. While previous research has aimed to understand the risks associated with interactions with AI conversational agents, these studies often fall short in capturing the lived experiences. Additionally, psychological risks have often been presented as a sub-category within broader AI-related risks in past taxonomy works, leading to under-representation of the impact of psychological risks of AI use. To address these challenges, our work presents a novel risk taxonomy focusing on psychological risks of using AI gathered through lived experience of individuals. We employed a mixed-method approach, involving a comprehensive survey with 283 individuals with lived mental health experience and workshops involving lived experience experts to develop a psychological risk taxonomy. Our taxonomy features 19 AI behaviors, 21 negative psychological impacts, and 15 contexts related to individuals. Additionally, we propose a novel multi-path vignette based framework for understanding the complex interplay between AI behaviors, psychological impacts, and individual user contexts. Finally, based on the feedback obtained from the workshop sessions, we present design recommendations for developing safer and more robust AI agents. Our work offers an in-depth understanding of the psychological risks associated with AI conversational agents and provides actionable recommendations for policymakers, researchers, and developers.
Related papers
- A Risk Taxonomy for Evaluating AI-Powered Psychotherapy Agents [10.405048273969085]
We introduce a novel risk taxonomy specifically designed for the systematic evaluation of conversational AI psychotherapists.<n>We discuss two use cases in detail: monitoring cognitive model-based risk factors during a counseling conversation to detect unsafe deviations, and in automated benchmarking of AI psychotherapists with simulated patients.
arXiv Detail & Related papers (2025-05-21T05:01:39Z) - Envisioning an AI-Enhanced Mental Health Ecosystem [1.534667887016089]
We explore various AI applications in peer support, self-help interventions, proactive monitoring, and data-driven insights.
We propose a hybrid ecosystem where AI assists but does not replace human providers, emphasising responsible deployment and evaluation.
arXiv Detail & Related papers (2025-03-19T04:21:38Z) - Fully Autonomous AI Agents Should Not be Developed [58.88624302082713]
This paper argues that fully autonomous AI agents should not be developed.
In support of this position, we build from prior scientific literature and current product marketing to delineate different AI agent levels.
Our analysis reveals that risks to people increase with the autonomy of a system.
arXiv Detail & Related papers (2025-02-04T19:00:06Z) - Human services organizations and the responsible integration of AI: Considering ethics and contextualizing risk(s) [0.0]
Authors argue that ethical concerns about AI deployment vary significantly based on implementation context and specific use cases.
They propose a dimensional risk assessment approach that considers factors like data sensitivity, professional oversight requirements, and potential impact on client wellbeing.
arXiv Detail & Related papers (2025-01-20T19:38:21Z) - Imagining and building wise machines: The centrality of AI metacognition [78.76893632793497]
We examine what is known about human wisdom and sketch a vision of its AI counterpart.<n>We argue that AI systems particularly struggle with metacognition.<n>We discuss how wise AI might be benchmarked, trained, and implemented.
arXiv Detail & Related papers (2024-11-04T18:10:10Z) - How Performance Pressure Influences AI-Assisted Decision Making [57.53469908423318]
We show how pressure and explainable AI (XAI) techniques interact with AI advice-taking behavior.
Our results show complex interaction effects, with different combinations of pressure and XAI techniques either improving or worsening AI advice taking behavior.
arXiv Detail & Related papers (2024-10-21T22:39:52Z) - HAICOSYSTEM: An Ecosystem for Sandboxing Safety Risks in Human-AI Interactions [76.42274173122328]
We present HAICOSYSTEM, a framework examining AI agent safety within diverse and complex social interactions.
We run 1840 simulations based on 92 scenarios across seven domains (e.g., healthcare, finance, education)
Our experiments show that state-of-the-art LLMs, both proprietary and open-sourced, exhibit safety risks in over 50% cases.
arXiv Detail & Related papers (2024-09-24T19:47:21Z) - Social Life Simulation for Non-Cognitive Skills Learning [7.730401608473805]
We introduce Simulife++, an interactive platform enabled by a large language model (LLM)<n>The system allows users to act as protagonists, creating stories with one or multiple AI-based characters in diverse social scenarios.<n>In particular, we expanded the Human-AI interaction to a Human-AI-AI collaboration by including a Sage Agent, who acts as a bystander.
arXiv Detail & Related papers (2024-05-01T01:45:50Z) - The Ethics of Advanced AI Assistants [53.89899371095332]
This paper focuses on the opportunities and the ethical and societal risks posed by advanced AI assistants.
We define advanced AI assistants as artificial agents with natural language interfaces, whose function is to plan and execute sequences of actions on behalf of a user.
We consider the deployment of advanced assistants at a societal scale, focusing on cooperation, equity and access, misinformation, economic impact, the environment and how best to evaluate advanced AI assistants.
arXiv Detail & Related papers (2024-04-24T23:18:46Z) - PsySafe: A Comprehensive Framework for Psychological-based Attack, Defense, and Evaluation of Multi-agent System Safety [70.84902425123406]
Multi-agent systems, when enhanced with Large Language Models (LLMs), exhibit profound capabilities in collective intelligence.
However, the potential misuse of this intelligence for malicious purposes presents significant risks.
We propose a framework (PsySafe) grounded in agent psychology, focusing on identifying how dark personality traits in agents can lead to risky behaviors.
Our experiments reveal several intriguing phenomena, such as the collective dangerous behaviors among agents, agents' self-reflection when engaging in dangerous behavior, and the correlation between agents' psychological assessments and dangerous behaviors.
arXiv Detail & Related papers (2024-01-22T12:11:55Z) - Adversarial Interaction Attack: Fooling AI to Misinterpret Human
Intentions [46.87576410532481]
We show that, despite their current huge success, deep learning based AI systems can be easily fooled by subtle adversarial noise.
Based on a case study of skeleton-based human interactions, we propose a novel adversarial attack on interactions.
Our study highlights potential risks in the interaction loop with AI and humans, which need to be carefully addressed when deploying AI systems in safety-critical applications.
arXiv Detail & Related papers (2021-01-17T16:23:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.