TTVD: Towards a Geometric Framework for Test-Time Adaptation Based on Voronoi Diagram
- URL: http://arxiv.org/abs/2412.07980v1
- Date: Tue, 10 Dec 2024 23:40:07 GMT
- Title: TTVD: Towards a Geometric Framework for Test-Time Adaptation Based on Voronoi Diagram
- Authors: Mingxi Lei, Chunwei Ma, Meng Ding, Yufan Zhou, Ziyun Huang, Jinhui Xu,
- Abstract summary: Test-time adaptation (TTA) is an emerging scheme used at inference time to address this issue.
We study the TTA problem from a geometric point of view.
We propose the Test-Time adjustment by Voronoi Diagram guidance (TTVD), a novel framework that leverages the benefits of this geometric property.
- Score: 14.238620530634392
- License:
- Abstract: Deep learning models often struggle with generalization when deploying on real-world data, due to the common distributional shift to the training data. Test-time adaptation (TTA) is an emerging scheme used at inference time to address this issue. In TTA, models are adapted online at the same time when making predictions to test data. Neighbor-based approaches have gained attention recently, where prototype embeddings provide location information to alleviate the feature shift between training and testing data. However, due to their inherit limitation of simplicity, they often struggle to learn useful patterns and encounter performance degradation. To confront this challenge, we study the TTA problem from a geometric point of view. We first reveal that the underlying structure of neighbor-based methods aligns with the Voronoi Diagram, a classical computational geometry model for space partitioning. Building on this observation, we propose the Test-Time adjustment by Voronoi Diagram guidance (TTVD), a novel framework that leverages the benefits of this geometric property. Specifically, we explore two key structures: 1) Cluster-induced Voronoi Diagram (CIVD): This integrates the joint contribution of self-supervision and entropy-based methods to provide richer information. 2) Power Diagram (PD): A generalized version of the Voronoi Diagram that refines partitions by assigning weights to each Voronoi cell. Our experiments under rigid, peer-reviewed settings on CIFAR-10-C, CIFAR-100-C, ImageNet-C, and ImageNet-R shows that TTVD achieves remarkable improvements compared to state-of-the-art methods. Moreover, extensive experimental results also explore the effects of batch size and class imbalance, which are two scenarios commonly encountered in real-world applications. These analyses further validate the robustness and adaptability of our proposed framework.
Related papers
- Deep Companion Learning: Enhancing Generalization Through Historical Consistency [35.5237083057451]
We propose a novel training method for Deep Neural Networks (DNNs) that enhances generalization by penalizing inconsistent model predictions.
We train a deep-companion model (DCM) by using previous versions of the model to provide forecasts on new inputs.
This companion model deciphers a meaningful latent semantic structure within the data, thereby providing targeted supervision.
arXiv Detail & Related papers (2024-07-26T15:31:13Z) - Modern Neighborhood Components Analysis: A Deep Tabular Baseline Two Decades Later [59.88557193062348]
We revisit the classic Neighborhood Component Analysis (NCA), designed to learn a linear projection that captures semantic similarities between instances.
We find that minor modifications, such as adjustments to the learning objectives and the integration of deep learning architectures, significantly enhance NCA's performance.
We also introduce a neighbor sampling strategy that improves both the efficiency and predictive accuracy of our proposed ModernNCA.
arXiv Detail & Related papers (2024-07-03T16:38:57Z) - Test-Time Domain Generalization for Face Anti-Spoofing [60.94384914275116]
Face Anti-Spoofing (FAS) is pivotal in safeguarding facial recognition systems against presentation attacks.
We introduce a novel Test-Time Domain Generalization framework for FAS, which leverages the testing data to boost the model's generalizability.
Our method, consisting of Test-Time Style Projection (TTSP) and Diverse Style Shifts Simulation (DSSS), effectively projects the unseen data to the seen domain space.
arXiv Detail & Related papers (2024-03-28T11:50:23Z) - Towards interpretable-by-design deep learning algorithms [11.154826546951414]
A proposed framework named I recasts the standard supervised classification problem into a function of similarity to a set of prototypes derived from the training data.
We show that one can turn such DL models into conceptually simpler, explainable-through-prototypes ones.
arXiv Detail & Related papers (2023-11-19T18:40:49Z) - Engineering the Neural Collapse Geometry of Supervised-Contrastive Loss [28.529476019629097]
Supervised-contrastive loss (SCL) is an alternative to cross-entropy (CE) for classification tasks.
We propose methods to engineer the geometry of learnt feature embeddings by modifying the contrastive loss.
arXiv Detail & Related papers (2023-10-02T04:23:17Z) - Consistency Regularization for Generalizable Source-free Domain
Adaptation [62.654883736925456]
Source-free domain adaptation (SFDA) aims to adapt a well-trained source model to an unlabelled target domain without accessing the source dataset.
Existing SFDA methods ONLY assess their adapted models on the target training set, neglecting the data from unseen but identically distributed testing sets.
We propose a consistency regularization framework to develop a more generalizable SFDA method.
arXiv Detail & Related papers (2023-08-03T07:45:53Z) - History Repeats: Overcoming Catastrophic Forgetting For Event-Centric
Temporal Knowledge Graph Completion [33.38304336898247]
Temporal knowledge graph (TKG) completion models rely on having access to the entire graph during training.
TKG data is often received incrementally as events unfold, leading to a dynamic non-stationary data distribution over time.
We propose a general continual training framework that is applicable to any TKG completion method.
arXiv Detail & Related papers (2023-05-30T01:21:36Z) - Toward Learning Robust and Invariant Representations with Alignment
Regularization and Data Augmentation [76.85274970052762]
This paper is motivated by a proliferation of options of alignment regularizations.
We evaluate the performances of several popular design choices along the dimensions of robustness and invariance.
We also formally analyze the behavior of alignment regularization to complement our empirical study under assumptions we consider realistic.
arXiv Detail & Related papers (2022-06-04T04:29:19Z) - Few-shot Learning as Cluster-induced Voronoi Diagrams: A Geometric
Approach [12.382578792491747]
Cluster-induced Voronoi Diagram (CIVD) improves the accuracy and robustness of few-shot learning.
Our CIVD-based workflow enables us to achieve new state-of-the-art results on mini-ImageNet, CUB, and tiered-ImagenNet datasets.
arXiv Detail & Related papers (2022-02-05T02:52:06Z) - Learning Gaussian Graphical Models with Latent Confounders [74.72998362041088]
We compare and contrast two strategies for inference in graphical models with latent confounders.
While these two approaches have similar goals, they are motivated by different assumptions about confounding.
We propose a new method, which combines the strengths of these two approaches.
arXiv Detail & Related papers (2021-05-14T00:53:03Z) - Deep Semantic Matching with Foreground Detection and Cycle-Consistency [103.22976097225457]
We address weakly supervised semantic matching based on a deep network.
We explicitly estimate the foreground regions to suppress the effect of background clutter.
We develop cycle-consistent losses to enforce the predicted transformations across multiple images to be geometrically plausible and consistent.
arXiv Detail & Related papers (2020-03-31T22:38:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.