Criteria and Bias of Parameterized Linear Regression under Edge of Stability Regime
- URL: http://arxiv.org/abs/2412.08025v1
- Date: Wed, 11 Dec 2024 02:07:37 GMT
- Title: Criteria and Bias of Parameterized Linear Regression under Edge of Stability Regime
- Authors: Peiyuan Zhang, Amin Karbasi,
- Abstract summary: Edge of Stability (EoS) is usually known as the Edge of Stability (EoS) phenomenon.
We show that EoS occurs even when $l$ is quadratic under proper conditions.
We also shed some new light on the implicit bias of diagonal linear networks when a larger step-size is employed.
- Score: 38.134523847923646
- License:
- Abstract: Classical optimization theory requires a small step-size for gradient-based methods to converge. Nevertheless, recent findings challenge the traditional idea by empirically demonstrating Gradient Descent (GD) converges even when the step-size $\eta$ exceeds the threshold of $2/L$, where $L$ is the global smooth constant. This is usually known as the Edge of Stability (EoS) phenomenon. A widely held belief suggests that an objective function with subquadratic growth plays an important role in incurring EoS. In this paper, we provide a more comprehensive answer by considering the task of finding linear interpolator $\beta \in R^{d}$ for regression with loss function $l(\cdot)$, where $\beta$ admits parameterization as $\beta = w^2_{+} - w^2_{-}$. Contrary to the previous work that suggests a subquadratic $l$ is necessary for EoS, our novel finding reveals that EoS occurs even when $l$ is quadratic under proper conditions. This argument is made rigorous by both empirical and theoretical evidence, demonstrating the GD trajectory converges to a linear interpolator in a non-asymptotic way. Moreover, the model under quadratic $l$, also known as a depth-$2$ diagonal linear network, remains largely unexplored under the EoS regime. Our analysis then sheds some new light on the implicit bias of diagonal linear networks when a larger step-size is employed, enriching the understanding of EoS on more practical models.
Related papers
- Convergence Rate Analysis of LION [54.28350823319057]
LION converges iterations of $cal(sqrtdK-)$ measured by gradient Karush-Kuhn-T (sqrtdK-)$.
We show that LION can achieve lower loss and higher performance compared to standard SGD.
arXiv Detail & Related papers (2024-11-12T11:30:53Z) - Learning with Norm Constrained, Over-parameterized, Two-layer Neural Networks [54.177130905659155]
Recent studies show that a reproducing kernel Hilbert space (RKHS) is not a suitable space to model functions by neural networks.
In this paper, we study a suitable function space for over- parameterized two-layer neural networks with bounded norms.
arXiv Detail & Related papers (2024-04-29T15:04:07Z) - Large Stepsize Gradient Descent for Logistic Loss: Non-Monotonicity of the Loss Improves Optimization Efficiency [47.8739414267201]
We consider gradient descent (GD) with a constant stepsize applied to logistic regression with linearly separable data.
We show that GD exits this initial oscillatory phase rapidly -- in $mathcalO(eta)$ steps -- and subsequently achieves an $tildemathcalO (1 / (eta t) )$ convergence rate.
Our results imply that, given a budget of $T$ steps, GD can achieve an accelerated loss of $tildemathcalO (1/T2)$ with an aggressive stepsize
arXiv Detail & Related papers (2024-02-24T23:10:28Z) - Globally Convergent Accelerated Algorithms for Multilinear Sparse
Logistic Regression with $\ell_0$-constraints [2.323238724742687]
Multilinear logistic regression serves as a powerful tool for the analysis of multidimensional data.
We propose an Accelerated Proximal Alternating Minim-MLSR model to solve the $ell_0$-MLSR.
We also demonstrate that APALM$+$ is globally convergent to a first-order critical point as well as to establish convergence by using the Kurdy-Lojasiewicz property.
arXiv Detail & Related papers (2023-09-17T11:05:08Z) - Implicit Bias of Gradient Descent for Logistic Regression at the Edge of
Stability [69.01076284478151]
In machine learning optimization, gradient descent (GD) often operates at the edge of stability (EoS)
This paper studies the convergence and implicit bias of constant-stepsize GD for logistic regression on linearly separable data in the EoS regime.
arXiv Detail & Related papers (2023-05-19T16:24:47Z) - Convergence of Adam Under Relaxed Assumptions [72.24779199744954]
We show that Adam converges to $epsilon$-stationary points with $O(epsilon-4)$ gradient complexity under far more realistic conditions.
We also propose a variance-reduced version of Adam with an accelerated gradient complexity of $O(epsilon-3)$.
arXiv Detail & Related papers (2023-04-27T06:27:37Z) - Restricted Strong Convexity of Deep Learning Models with Smooth
Activations [31.003601717265006]
We study the problem of optimization of deep learning models with smooth activation functions.
We introduce a new analysis of optimization based on Restricted Strong Convexity (RSC)
Ours is the first result on establishing geometric convergence of GD based on RSC for deep learning models.
arXiv Detail & Related papers (2022-09-29T21:24:26Z) - Provably Efficient Convergence of Primal-Dual Actor-Critic with
Nonlinear Function Approximation [15.319335698574932]
We show the first efficient convergence result with primal-dual actor-critic with a convergence of $mathcalOleft ascent(Nright)Nright)$ under Polyian sampling.
Results on Open GymAI continuous control tasks.
arXiv Detail & Related papers (2022-02-28T15:16:23Z) - Single Trajectory Nonparametric Learning of Nonlinear Dynamics [8.438421942654292]
Given a single trajectory of a dynamical system, we analyze the performance of the nonparametric least squares estimator (LSE)
We leverage recently developed information-theoretic methods to establish the optimality of the LSE for non hypotheses classes.
We specialize our results to a number of scenarios of practical interest, such as Lipschitz dynamics, generalized linear models, and dynamics described by functions in certain classes of Reproducing Kernel Hilbert Spaces (RKHS)
arXiv Detail & Related papers (2022-02-16T19:38:54Z) - Last iterate convergence of SGD for Least-Squares in the Interpolation
regime [19.05750582096579]
We study the noiseless model in the fundamental least-squares setup.
We assume that an optimum predictor fits perfectly inputs and outputs $langle theta_*, phi(X) rangle = Y$, where $phi(X)$ stands for a possibly infinite dimensional non-linear feature map.
arXiv Detail & Related papers (2021-02-05T14:02:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.