Auto-Generating Earnings Report Analysis via a Financial-Augmented LLM
- URL: http://arxiv.org/abs/2412.08179v1
- Date: Wed, 11 Dec 2024 08:09:42 GMT
- Title: Auto-Generating Earnings Report Analysis via a Financial-Augmented LLM
- Authors: Van-Duc Le,
- Abstract summary: This paper presents a novel challenge: developing an LLM specifically for automating the generation of earnings reports analysis.
Our methodology involves an in-depth analysis of existing earnings reports followed by a unique approach to fine-tune an LLM for this purpose.
With extensive financial documents, we construct financial instruction data, enabling the refined adaptation of our LLM to financial contexts.
- Score: 1.3597551064547502
- License:
- Abstract: Financial analysis heavily relies on the evaluation of earnings reports to gain insights into company performance. Traditional generation of these reports requires extensive financial expertise and is time-consuming. With the impressive progress in Large Language Models (LLMs), a wide variety of financially focused LLMs has emerged, addressing tasks like sentiment analysis and entity recognition in the financial domain. This paper presents a novel challenge: developing an LLM specifically for automating the generation of earnings reports analysis. Our methodology involves an in-depth analysis of existing earnings reports followed by a unique approach to fine-tune an LLM for this purpose. This approach combines retrieval augmentation and the generation of instruction-based data, specifically tailored for the financial sector, to enhance the LLM's performance. With extensive financial documents, we construct financial instruction data, enabling the refined adaptation of our LLM to financial contexts. Preliminary results indicate that our augmented LLM outperforms general open-source models and rivals commercial counterparts like GPT-3.5 in financial applications. Our research paves the way for streamlined and insightful automation in financial report generation, marking a significant stride in the field of financial analysis.
Related papers
- A Survey of Large Language Models for Financial Applications: Progress, Prospects and Challenges [60.546677053091685]
Large language models (LLMs) have unlocked novel opportunities for machine learning applications in the financial domain.
We explore the application of LLMs on various financial tasks, focusing on their potential to transform traditional practices and drive innovation.
We highlight this survey for categorizing the existing literature into key application areas, including linguistic tasks, sentiment analysis, financial time series, financial reasoning, agent-based modeling, and other applications.
arXiv Detail & Related papers (2024-06-15T16:11:35Z) - Advancing Anomaly Detection: Non-Semantic Financial Data Encoding with LLMs [49.57641083688934]
We introduce a novel approach to anomaly detection in financial data using Large Language Models (LLMs) embeddings.
Our experiments demonstrate that LLMs contribute valuable information to anomaly detection as our models outperform the baselines.
arXiv Detail & Related papers (2024-06-05T20:19:09Z) - AlphaFin: Benchmarking Financial Analysis with Retrieval-Augmented Stock-Chain Framework [48.3060010653088]
We release AlphaFin datasets, combining traditional research datasets, real-time financial data, and handwritten chain-of-thought (CoT) data.
We then use AlphaFin datasets to benchmark a state-of-the-art method, called Stock-Chain, for effectively tackling the financial analysis task.
arXiv Detail & Related papers (2024-03-19T09:45:33Z) - FinBen: A Holistic Financial Benchmark for Large Language Models [75.09474986283394]
FinBen is the first extensive open-source evaluation benchmark, including 36 datasets spanning 24 financial tasks.
FinBen offers several key innovations: a broader range of tasks and datasets, the first evaluation of stock trading, novel agent and Retrieval-Augmented Generation (RAG) evaluation, and three novel open-source evaluation datasets for text summarization, question answering, and stock trading.
arXiv Detail & Related papers (2024-02-20T02:16:16Z) - Revolutionizing Finance with LLMs: An Overview of Applications and Insights [45.660896719456886]
Large Language Models (LLMs) like ChatGPT have seen considerable advancements and have been applied in diverse fields.
These models are being utilized for automating financial report generation, forecasting market trends, analyzing investor sentiment, and offering personalized financial advice.
arXiv Detail & Related papers (2024-01-22T01:06:17Z) - Enhancing Financial Sentiment Analysis via Retrieval Augmented Large
Language Models [11.154814189699735]
Large Language Models (LLMs) pre-trained on extensive corpora have demonstrated superior performance across various NLP tasks.
We introduce a retrieval-augmented LLMs framework for financial sentiment analysis.
Our approach achieves 15% to 48% performance gain in accuracy and F1 score.
arXiv Detail & Related papers (2023-10-06T05:40:23Z) - Instruct-FinGPT: Financial Sentiment Analysis by Instruction Tuning of
General-Purpose Large Language Models [18.212210748797332]
We introduce a simple yet effective instruction tuning approach to address these issues.
In the experiment, our approach outperforms state-of-the-art supervised sentiment analysis models.
arXiv Detail & Related papers (2023-06-22T03:56:38Z) - PIXIU: A Large Language Model, Instruction Data and Evaluation Benchmark
for Finance [63.51545277822702]
PIXIU is a comprehensive framework including the first financial large language model (LLMs) based on fine-tuning LLaMA with instruction data.
We propose FinMA by fine-tuning LLaMA with the constructed dataset to be able to follow instructions for various financial tasks.
We conduct a detailed analysis of FinMA and several existing LLMs, uncovering their strengths and weaknesses in handling critical financial tasks.
arXiv Detail & Related papers (2023-06-08T14:20:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.