Lightweight Method for Interactive 3D Medical Image Segmentation with Multi-Round Result Fusion
- URL: http://arxiv.org/abs/2412.08315v1
- Date: Wed, 11 Dec 2024 11:52:16 GMT
- Title: Lightweight Method for Interactive 3D Medical Image Segmentation with Multi-Round Result Fusion
- Authors: Bingzhi Shen, Lufan Chang, Siqi Chen, Shuxiang Guo, Hao Liu,
- Abstract summary: Segment Anything Model (SAM) has drawn widespread attention due to its zero-shot generalization capabilities in interactive segmentation.
We propose Lightweight Interactive Network for 3D Medical Image (LIM-Net) as a novel approach demonstrating the potential of compact CNN-based models.
LIM-Net initiates segmentation by generating a 2D prompt mask from user hints.
It exhibits stronger generalization to unseen data compared to SAM-based models, with competitive accuracy while requiring fewer interactions.
- Score: 7.158573385931718
- License:
- Abstract: In medical imaging, precise annotation of lesions or organs is often required. However, 3D volumetric images typically consist of hundreds or thousands of slices, making the annotation process extremely time-consuming and laborious. Recently, the Segment Anything Model (SAM) has drawn widespread attention due to its remarkable zero-shot generalization capabilities in interactive segmentation. While researchers have explored adapting SAM for medical applications, such as using SAM adapters or constructing 3D SAM models, a key question remains: Can traditional CNN networks achieve the same strong zero-shot generalization in this task? In this paper, we propose the Lightweight Interactive Network for 3D Medical Image Segmentation (LIM-Net), a novel approach demonstrating the potential of compact CNN-based models. Built upon a 2D CNN backbone, LIM-Net initiates segmentation by generating a 2D prompt mask from user hints. This mask is then propagated through the 3D sequence via the Memory Module. To refine and stabilize results during interaction, the Multi-Round Result Fusion (MRF) Module selects and merges optimal masks from multiple rounds. Our extensive experiments across multiple datasets and modalities demonstrate LIM-Net's competitive performance. It exhibits stronger generalization to unseen data compared to SAM-based models, with competitive accuracy while requiring fewer interactions. Notably, LIM-Net's lightweight design offers significant advantages in deployment and inference efficiency, with low GPU memory consumption suitable for resource-constrained environments. These promising results demonstrate LIM-Net can serve as a strong baseline, complementing and contrasting with popular SAM models to further boost effective interactive medical image segmentation. The code will be released at \url{https://github.com/goodtime-123/LIM-Net}.
Related papers
- Prompting Segment Anything Model with Domain-Adaptive Prototype for Generalizable Medical Image Segmentation [49.5901368256326]
We propose a novel Domain-Adaptive Prompt framework for fine-tuning the Segment Anything Model (termed as DAPSAM) in segmenting medical images.
Our DAPSAM achieves state-of-the-art performance on two medical image segmentation tasks with different modalities.
arXiv Detail & Related papers (2024-09-19T07:28:33Z) - PAM: A Propagation-Based Model for Segmenting Any 3D Objects across Multi-Modal Medical Images [11.373941923130305]
PAM (Propagating Anything Model) is a segmentation approach that uses a 2D prompt, like a bounding box or sketch, to create a complete 3D segmentation of medical image volumes.
It significantly outperformed existing models like MedSAM and SegVol, with an average improvement of over 18.1% in dice similarity coefficient (DSC) across 44 medical datasets and various object types.
arXiv Detail & Related papers (2024-08-25T13:42:47Z) - Novel adaptation of video segmentation to 3D MRI: efficient zero-shot knee segmentation with SAM2 [1.6237741047782823]
We introduce a method for zero-shot, single-prompt segmentation of 3D knee MRI by adapting Segment Anything Model 2.
By treating slices from 3D medical volumes as individual video frames, we leverage SAM2's advanced capabilities to generate motion- and spatially-aware predictions.
We demonstrate that SAM2 can efficiently perform segmentation tasks in a zero-shot manner with no additional training or fine-tuning.
arXiv Detail & Related papers (2024-08-08T21:39:15Z) - Multi-Scale and Detail-Enhanced Segment Anything Model for Salient Object Detection [58.241593208031816]
Segment Anything Model (SAM) has been proposed as a visual fundamental model, which gives strong segmentation and generalization capabilities.
We propose a Multi-scale and Detail-enhanced SAM (MDSAM) for Salient Object Detection (SOD)
Experimental results demonstrate the superior performance of our model on multiple SOD datasets.
arXiv Detail & Related papers (2024-08-08T09:09:37Z) - Interactive 3D Medical Image Segmentation with SAM 2 [17.523874868612577]
We explore the zero-shot capabilities of SAM 2, the next-generation Meta SAM model trained on videos, for 3D medical image segmentation.
By treating sequential 2D slices of 3D images as video frames, SAM 2 can fully automatically propagate annotations from a single frame to the entire 3D volume.
arXiv Detail & Related papers (2024-08-05T16:58:56Z) - MAS-SAM: Segment Any Marine Animal with Aggregated Features [55.91291540810978]
We propose a novel feature learning framework named MAS-SAM for marine animal segmentation.
Our method enables to extract richer marine information from global contextual cues to fine-grained local details.
arXiv Detail & Related papers (2024-04-24T07:38:14Z) - MA-SAM: Modality-agnostic SAM Adaptation for 3D Medical Image
Segmentation [58.53672866662472]
We introduce a modality-agnostic SAM adaptation framework, named as MA-SAM.
Our method roots in the parameter-efficient fine-tuning strategy to update only a small portion of weight increments.
By injecting a series of 3D adapters into the transformer blocks of the image encoder, our method enables the pre-trained 2D backbone to extract third-dimensional information from input data.
arXiv Detail & Related papers (2023-09-16T02:41:53Z) - SAM3D: Segment Anything Model in Volumetric Medical Images [11.764867415789901]
We introduce SAM3D, an innovative adaptation tailored for 3D volumetric medical image analysis.
Unlike current SAM-based methods that segment volumetric data by converting the volume into separate 2D slices for individual analysis, our SAM3D model processes the entire 3D volume image in a unified approach.
arXiv Detail & Related papers (2023-09-07T06:05:28Z) - SAMM (Segment Any Medical Model): A 3D Slicer Integration to SAM [6.172995387355581]
We introduce Segment Any Medical Model (SAMM), an extension of SAM on 3D Slicer.
SAMM achieves 0.6-second latency of a complete cycle and can infer image masks in nearly real-time.
arXiv Detail & Related papers (2023-04-12T05:39:38Z) - MISSU: 3D Medical Image Segmentation via Self-distilling TransUNet [55.16833099336073]
We propose to self-distill a Transformer-based UNet for medical image segmentation.
It simultaneously learns global semantic information and local spatial-detailed features.
Our MISSU achieves the best performance over previous state-of-the-art methods.
arXiv Detail & Related papers (2022-06-02T07:38:53Z) - CoTr: Efficiently Bridging CNN and Transformer for 3D Medical Image
Segmentation [95.51455777713092]
Convolutional neural networks (CNNs) have been the de facto standard for nowadays 3D medical image segmentation.
We propose a novel framework that efficiently bridges a bf Convolutional neural network and a bf Transformer bf (CoTr) for accurate 3D medical image segmentation.
arXiv Detail & Related papers (2021-03-04T13:34:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.