Reloc3r: Large-Scale Training of Relative Camera Pose Regression for Generalizable, Fast, and Accurate Visual Localization
- URL: http://arxiv.org/abs/2412.08376v1
- Date: Wed, 11 Dec 2024 13:36:18 GMT
- Title: Reloc3r: Large-Scale Training of Relative Camera Pose Regression for Generalizable, Fast, and Accurate Visual Localization
- Authors: Siyan Dong, Shuzhe Wang, Shaohui Liu, Lulu Cai, Qingnan Fan, Juho Kannala, Yanchao Yang,
- Abstract summary: Visual localization aims to determine the camera pose of a query image relative to a database of posed images.
Deep neural networks that directly regress camera poses have gained popularity due to their fast inference capabilities.
We present textbfReloc3r, a simple yet effective visual localization framework.
- Score: 25.772574727405825
- License:
- Abstract: Visual localization aims to determine the camera pose of a query image relative to a database of posed images. In recent years, deep neural networks that directly regress camera poses have gained popularity due to their fast inference capabilities. However, existing methods struggle to either generalize well to new scenes or provide accurate camera pose estimates. To address these issues, we present \textbf{Reloc3r}, a simple yet effective visual localization framework. It consists of an elegantly designed relative pose regression network, and a minimalist motion averaging module for absolute pose estimation. Trained on approximately 8 million posed image pairs, Reloc3r achieves surprisingly good performance and generalization ability. We conduct extensive experiments on 6 public datasets, consistently demonstrating the effectiveness and efficiency of the proposed method. It provides high-quality camera pose estimates in real time and generalizes to novel scenes. Code, weights, and data at: \url{https://github.com/ffrivera0/reloc3r}.
Related papers
- FaVoR: Features via Voxel Rendering for Camera Relocalization [23.7893950095252]
Camera relocalization methods range from dense image alignment to direct camera pose regression from a query image.
We propose a novel approach that leverages a globally sparse yet locally dense 3D representation of 2D features.
By tracking and triangulating landmarks over a sequence of frames, we construct a sparse voxel map optimized to render image patch descriptors observed during tracking.
arXiv Detail & Related papers (2024-09-11T18:58:16Z) - SRPose: Two-view Relative Pose Estimation with Sparse Keypoints [51.49105161103385]
SRPose is a sparse keypoint-based framework for two-view relative pose estimation in camera-to-world and object-to-camera scenarios.
It achieves competitive or superior performance compared to state-of-the-art methods in terms of accuracy and speed.
It is robust to different image sizes and camera intrinsics, and can be deployed with low computing resources.
arXiv Detail & Related papers (2024-07-11T05:46:35Z) - Cameras as Rays: Pose Estimation via Ray Diffusion [54.098613859015856]
Estimating camera poses is a fundamental task for 3D reconstruction and remains challenging given sparsely sampled views.
We propose a distributed representation of camera pose that treats a camera as a bundle of rays.
Our proposed methods, both regression- and diffusion-based, demonstrate state-of-the-art performance on camera pose estimation on CO3D.
arXiv Detail & Related papers (2024-02-22T18:59:56Z) - Learning Robust Multi-Scale Representation for Neural Radiance Fields
from Unposed Images [65.41966114373373]
We present an improved solution to the neural image-based rendering problem in computer vision.
The proposed approach could synthesize a realistic image of the scene from a novel viewpoint at test time.
arXiv Detail & Related papers (2023-11-08T08:18:23Z) - Learning to Estimate 6DoF Pose from Limited Data: A Few-Shot,
Generalizable Approach using RGB Images [60.0898989456276]
We present a new framework named Cas6D for few-shot 6DoF pose estimation that is generalizable and uses only RGB images.
To address the false positives of target object detection in the extreme few-shot setting, our framework utilizes a self-supervised pre-trained ViT to learn robust feature representations.
Experimental results on the LINEMOD and GenMOP datasets demonstrate that Cas6D outperforms state-of-the-art methods by 9.2% and 3.8% accuracy (Proj-5) under the 32-shot setting.
arXiv Detail & Related papers (2023-06-13T07:45:42Z) - PoseMatcher: One-shot 6D Object Pose Estimation by Deep Feature Matching [51.142988196855484]
We propose PoseMatcher, an accurate model free one-shot object pose estimator.
We create a new training pipeline for object to image matching based on a three-view system.
To enable PoseMatcher to attend to distinct input modalities, an image and a pointcloud, we introduce IO-Layer.
arXiv Detail & Related papers (2023-04-03T21:14:59Z) - NEWTON: Neural View-Centric Mapping for On-the-Fly Large-Scale SLAM [51.21564182169607]
Newton is a view-centric mapping method that dynamically constructs neural fields based on run-time observation.
Our method enables camera pose updates using loop closures and scene boundary updates by representing the scene with multiple neural fields.
The experimental results demonstrate the superior performance of our method over existing world-centric neural field-based SLAM systems.
arXiv Detail & Related papers (2023-03-23T20:22:01Z) - Fast and Lightweight Scene Regressor for Camera Relocalization [1.6708069984516967]
Estimating the camera pose directly with respect to pre-built 3D models can be prohibitively expensive for several applications.
This study proposes a simple scene regression method that requires only a multi-layer perceptron network for mapping scene coordinates.
The proposed approach uses sparse descriptors to regress the scene coordinates, instead of a dense RGB image.
arXiv Detail & Related papers (2022-12-04T14:41:20Z) - SparsePose: Sparse-View Camera Pose Regression and Refinement [32.74890928398753]
We propose SparsePose for recovering accurate camera poses given a sparse set of wide-baseline images (fewer than 10)
The method learns to regress initial camera poses and then iteratively refine them after training on a large-scale dataset of objects.
We also demonstrate our pipeline for high-fidelity 3D reconstruction using only 5-9 images of an object.
arXiv Detail & Related papers (2022-11-29T05:16:07Z) - ImPosIng: Implicit Pose Encoding for Efficient Camera Pose Estimation [2.6808541153140077]
Implicit Pose.
(ImPosing) embeds images and camera poses into a common latent representation with 2 separate neural networks.
By evaluating candidates through the latent space in a hierarchical manner, the camera position and orientation are not directly regressed but refined.
arXiv Detail & Related papers (2022-05-05T13:33:25Z) - Visual Camera Re-Localization Using Graph Neural Networks and Relative
Pose Supervision [31.947525258453584]
Visual re-localization means using a single image as input to estimate the camera's location and orientation relative to a pre-recorded environment.
Our proposed method makes few special assumptions, and is fairly lightweight in training and testing.
We validate the effectiveness of our approach on both standard indoor (7-Scenes) and outdoor (Cambridge Landmarks) camera re-localization benchmarks.
arXiv Detail & Related papers (2021-04-06T14:29:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.