SAM-Mamba: Mamba Guided SAM Architecture for Generalized Zero-Shot Polyp Segmentation
- URL: http://arxiv.org/abs/2412.08482v1
- Date: Wed, 11 Dec 2024 15:47:54 GMT
- Title: SAM-Mamba: Mamba Guided SAM Architecture for Generalized Zero-Shot Polyp Segmentation
- Authors: Tapas Kumar Dutta, Snehashis Majhi, Deepak Ranjan Nayak, Debesh Jha,
- Abstract summary: Polyp segmentation in colonoscopy is crucial for detecting colorectal cancer.<n>Traditional segmentation models based on Convolutional Neural Networks (CNNs) struggle to capture detailed patterns and global context.<n>We propose the Mamba-guided Segment Anything Model (SAM-Mamba) for efficient polyp segmentation.
- Score: 3.075778955462259
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Polyp segmentation in colonoscopy is crucial for detecting colorectal cancer. However, it is challenging due to variations in the structure, color, and size of polyps, as well as the lack of clear boundaries with surrounding tissues. Traditional segmentation models based on Convolutional Neural Networks (CNNs) struggle to capture detailed patterns and global context, limiting their performance. Vision Transformer (ViT)-based models address some of these issues but have difficulties in capturing local context and lack strong zero-shot generalization. To this end, we propose the Mamba-guided Segment Anything Model (SAM-Mamba) for efficient polyp segmentation. Our approach introduces a Mamba-Prior module in the encoder to bridge the gap between the general pre-trained representation of SAM and polyp-relevant trivial clues. It injects salient cues of polyp images into the SAM image encoder as a domain prior while capturing global dependencies at various scales, leading to more accurate segmentation results. Extensive experiments on five benchmark datasets show that SAM-Mamba outperforms traditional CNN, ViT, and Adapter-based models in both quantitative and qualitative measures. Additionally, SAM-Mamba demonstrates excellent adaptability to unseen datasets, making it highly suitable for real-time clinical use.
Related papers
- BiSeg-SAM: Weakly-Supervised Post-Processing Framework for Boosting Binary Segmentation in Segment Anything Models [6.74659948545092]
BiSeg-SAM is a weakly supervised prompting and boundary refinement network for the segmentation of polyps and skin lesions.
Our method demonstrates significant superiority over state-of-the-art (SOTA) methods when tested on five polyp datasets and one skin cancer dataset.
arXiv Detail & Related papers (2025-04-02T08:04:37Z) - UrbanSAM: Learning Invariance-Inspired Adapters for Segment Anything Models in Urban Construction [51.54946346023673]
Urban morphology is inherently complex, with irregular objects of diverse shapes and varying scales.
The Segment Anything Model (SAM) has shown significant potential in segmenting complex scenes.
We propose UrbanSAM, a customized version of SAM specifically designed to analyze complex urban environments.
arXiv Detail & Related papers (2025-02-21T04:25:19Z) - Multi-Scale and Detail-Enhanced Segment Anything Model for Salient Object Detection [58.241593208031816]
Segment Anything Model (SAM) has been proposed as a visual fundamental model, which gives strong segmentation and generalization capabilities.
We propose a Multi-scale and Detail-enhanced SAM (MDSAM) for Salient Object Detection (SOD)
Experimental results demonstrate the superior performance of our model on multiple SOD datasets.
arXiv Detail & Related papers (2024-08-08T09:09:37Z) - ASPS: Augmented Segment Anything Model for Polyp Segmentation [77.25557224490075]
The Segment Anything Model (SAM) has introduced unprecedented potential for polyp segmentation.
SAM's Transformer-based structure prioritizes global and low-frequency information.
CFA integrates a trainable CNN encoder branch with a frozen ViT encoder, enabling the integration of domain-specific knowledge.
arXiv Detail & Related papers (2024-06-30T14:55:32Z) - MAS-SAM: Segment Any Marine Animal with Aggregated Features [55.91291540810978]
We propose a novel feature learning framework named MAS-SAM for marine animal segmentation.
Our method enables to extract richer marine information from global contextual cues to fine-grained local details.
arXiv Detail & Related papers (2024-04-24T07:38:14Z) - Swin-UMamba: Mamba-based UNet with ImageNet-based pretraining [85.08169822181685]
This paper introduces a novel Mamba-based model, Swin-UMamba, designed specifically for medical image segmentation tasks.
Swin-UMamba demonstrates superior performance with a large margin compared to CNNs, ViTs, and latest Mamba-based models.
arXiv Detail & Related papers (2024-02-05T18:58:11Z) - BA-SAM: Scalable Bias-Mode Attention Mask for Segment Anything Model [65.92173280096588]
We address the challenge of image resolution variation for the Segment Anything Model (SAM)
SAM, known for its zero-shot generalizability, exhibits a performance degradation when faced with datasets with varying image sizes.
We present a bias-mode attention mask that allows each token to prioritize neighboring information.
arXiv Detail & Related papers (2024-01-04T15:34:44Z) - Segment Anything Model-guided Collaborative Learning Network for
Scribble-supervised Polyp Segmentation [45.15517909664628]
Polyp segmentation plays a vital role in accurately locating polyps at an early stage.
pixel-wise annotation for polyp images by physicians during the diagnosis is both time-consuming and expensive.
We propose a novel SAM-guided Collaborative Learning Network (SAM-CLNet) for scribble-supervised polyp segmentation.
arXiv Detail & Related papers (2023-12-01T03:07:13Z) - Beyond Adapting SAM: Towards End-to-End Ultrasound Image Segmentation via Auto Prompting [10.308637269138146]
We propose SAMUS as a universal model tailored for ultrasound image segmentation.
We further enable it to work in an end-to-end manner denoted as AutoSAMUS.
AutoSAMUS is realized by introducing an auto prompt generator (APG) to replace the manual prompt encoder of SAMUS.
arXiv Detail & Related papers (2023-09-13T09:15:20Z) - Ladder Fine-tuning approach for SAM integrating complementary network [5.46706034286531]
In medical imaging, the lack of training samples due to privacy concerns and other factors presents a major challenge for applying these generalized models to medical image segmentation task.
In this study, we propose to combine a complementary Convolutional Neural Network (CNN) along with the standard SAM network for medical image segmentation.
This strategy significantly reduces trainnig time and achieves competitive results on publicly available dataset.
arXiv Detail & Related papers (2023-06-22T08:36:17Z) - Polyp-SAM: Transfer SAM for Polyp Segmentation [2.4492242722754107]
Segment Anything Model (SAM) has recently gained much attention in both natural and medical image segmentation.
We propose Poly-SAM, a finetuned SAM model for polyp segmentation, and compare its performance to several state-of-the-art polyp segmentation models.
Our Polyp-SAM achieves state-of-the-art performance on two datasets and impressive performance on three datasets, with dice scores all above 88%.
arXiv Detail & Related papers (2023-04-29T16:11:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.