Exact Algorithms for Multiagent Path Finding with Communication Constraints on Tree-Like Structures
- URL: http://arxiv.org/abs/2412.08556v2
- Date: Thu, 12 Dec 2024 09:51:26 GMT
- Title: Exact Algorithms for Multiagent Path Finding with Communication Constraints on Tree-Like Structures
- Authors: Foivos Fioravantes, Dušan Knop, Jan Matyáš Křišťan, Nikolaos Melissinos, Michal Opler,
- Abstract summary: We study the Multiagent Path Finding with Communication Constraint problem under the parameterized complexity framework.
Our main contribution is three exact algorithms that are efficient when considering particular structures for the input network.
- Score: 0.0
- License:
- Abstract: Consider the scenario where multiple agents have to move in an optimal way through a network, each one towards their ending position while avoiding collisions. By optimal, we mean as fast as possible, which is evaluated by a measure known as the makespan of the proposed solution. This is the setting studied in the Multiagent Path Finding problem. In this work, we additionally provide the agents with a way to communicate with each other. Due to size constraints, it is reasonable to assume that the range of communication of each agent will be limited. What should be the trajectories of the agents to, additionally, maintain a backbone of communication? In this work, we study the Multiagent Path Finding with Communication Constraint problem under the parameterized complexity framework. Our main contribution is three exact algorithms that are efficient when considering particular structures for the input network. We provide such algorithms for the case when the communication range and the number of agents (the makespan resp.) are provided in the input and the network has a tree topology, or bounded maximum degree (has a tree-like topology, i.e., bounded treewidth resp.). We complement these results by showing that it is highly unlikely to construct efficient algorithms when considering the number of agents as part of the input, even if the makespan is $3$ and the communication range is $1$.
Related papers
- A Multiagent Path Search Algorithm for Large-Scale Coalition Structure Generation [61.08720171136229]
Coalition structure generation is a fundamental computational problem in multiagent systems.
We develop SALDAE, a multiagent path finding algorithm for CSG that operates on a graph of coalition structures.
arXiv Detail & Related papers (2025-02-14T15:21:27Z) - Solving Multiagent Path Finding on Highly Centralized Networks [0.0]
The Mutliagent Path Finding (MAPF) problem consists of identifying trajectories that a set of agents should follow inside a given network.
We show that MAPF is NP-hard when the given network has a star-like topology or is a tree with $11$ leaves.
Our main contribution is an exact algorithm that scales well as the input grows.
arXiv Detail & Related papers (2024-12-12T16:38:25Z) - Optimal and Bounded Suboptimal Any-Angle Multi-agent Pathfinding [13.296796764344169]
We present the first optimal any-angle multi-agent pathfinding algorithm.
Our planner is based on the Continuous Conflict-based Search (CCBS) algorithm and an optimal any-angle variant of the Safe Interval Path Planning (TO-AA-SIPP)
We adapt two techniques from classical MAPF to the any-angle setting, namely Disjoint Splitting and Multi-Constraints.
arXiv Detail & Related papers (2024-04-25T07:41:47Z) - Scalable Mechanism Design for Multi-Agent Path Finding [87.40027406028425]
Multi-Agent Path Finding (MAPF) involves determining paths for multiple agents to travel simultaneously and collision-free through a shared area toward given goal locations.
Finding an optimal solution is often computationally infeasible, making the use of approximate, suboptimal algorithms essential.
We introduce the problem of scalable mechanism design for MAPF and propose three strategyproof mechanisms, two of which even use approximate MAPF algorithms.
arXiv Detail & Related papers (2024-01-30T14:26:04Z) - Monte-Carlo Tree Search for Multi-Agent Pathfinding: Preliminary Results [60.4817465598352]
We introduce an original variant of Monte-Carlo Tree Search (MCTS) tailored to multi-agent pathfinding.
Specifically, we use individual paths to assist the agents with the the goal-reaching behavior.
We also use a dedicated decomposition technique to reduce the branching factor of the tree search procedure.
arXiv Detail & Related papers (2023-07-25T12:33:53Z) - Cooperative Multi-Agent Reinforcement Learning: Asynchronous
Communication and Linear Function Approximation [77.09836892653176]
We study multi-agent reinforcement learning in the setting of episodic Markov decision processes.
We propose a provably efficient algorithm based on value that enable asynchronous communication.
We show that a minimal $Omega(dM)$ communication complexity is required to improve the performance through collaboration.
arXiv Detail & Related papers (2023-05-10T20:29:29Z) - Communication-Efficient Topologies for Decentralized Learning with
$O(1)$ Consensus Rate [35.698182247676414]
Decentralized optimization is an emerging paradigm in distributed learning in which agents achieve network-wide solutions by peer-to-peer communication without the central server.
We show that the total number of iterations to reach a network-wide solution is affected by the speed at which the agents' information is mixed'' by communication.
We propose a new family of topologies, EquiTopo, which has an (almost) constant degree and a network-size-independent consensus rate.
arXiv Detail & Related papers (2022-10-14T15:02:01Z) - Acceleration in Distributed Optimization Under Similarity [72.54787082152278]
We study distributed (strongly convex) optimization problems over a network of agents, with no centralized nodes.
An $varepsilon$-solution is achieved in $tildemathcalrhoObig(sqrtfracbeta/mu (1-)log1/varepsilonbig)$ number of communications steps.
This rate matches (up to poly-log factors) for the first time lower complexity communication bounds of distributed gossip-algorithms applied to the class of problems of interest.
arXiv Detail & Related papers (2021-10-24T04:03:00Z) - Prioritized SIPP for Multi-Agent Path Finding With Kinematic Constraints [0.0]
Multi-Agent Path Finding (MAPF) is a long-standing problem in Robotics and Artificial Intelligence.
We present a method that mitigates this issue to a certain extent.
arXiv Detail & Related papers (2021-08-11T10:42:11Z) - Scalable Anytime Planning for Multi-Agent MDPs [37.69939216970677]
We present a scalable tree search planning algorithm for large multi-agent sequential decision problems that require dynamic collaboration.
Our algorithm comprises three elements: online planning with Monte Carlo Tree Search (MCTS), factored representations of local agent interactions with coordination graphs, and the iterative Max-Plus method for joint action selection.
arXiv Detail & Related papers (2021-01-12T22:50:17Z) - Towards Optimally Efficient Tree Search with Deep Learning [76.64632985696237]
This paper investigates the classical integer least-squares problem which estimates signals integer from linear models.
The problem is NP-hard and often arises in diverse applications such as signal processing, bioinformatics, communications and machine learning.
We propose a general hyper-accelerated tree search (HATS) algorithm by employing a deep neural network to estimate the optimal estimation for the underlying simplified memory-bounded A* algorithm.
arXiv Detail & Related papers (2021-01-07T08:00:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.