Der Effizienz- und Intelligenzbegriff in der Lexikographie und kuenstlichen Intelligenz: kann ChatGPT die lexikographische Textsorte nachbilden?
- URL: http://arxiv.org/abs/2412.08599v1
- Date: Wed, 11 Dec 2024 18:18:07 GMT
- Title: Der Effizienz- und Intelligenzbegriff in der Lexikographie und kuenstlichen Intelligenz: kann ChatGPT die lexikographische Textsorte nachbilden?
- Authors: Ivan Arias-Arias, Maria Jose Dominguez Vazquez, Carlos Valcarcel Riveiro,
- Abstract summary: This paper examines the concept of efficiency and intelligence in lexicography and artificial intelligence, AI.
The aim of the experiments is to gain empirically and statistically based insights into the lexicographical text type,dictionary article.
- Score: 0.0
- License:
- Abstract: By means of pilot experiments for the language pair German and Galician, this paper examines the concept of efficiency and intelligence in lexicography and artificial intelligence, AI. The aim of the experiments is to gain empirically and statistically based insights into the lexicographical text type,dictionary article, in the responses of ChatGPT 3.5, as well as into the lexicographical data on which this chatbot was trained. Both quantitative and qualitative methods are used for this purpose. The analysis is based on the evaluation of the outputs of several sessions with the same prompt in ChatGPT 3.5. On the one hand, the algorithmic performance of intelligent systems is evaluated in comparison with data from lexicographical works. On the other hand, the ChatGPT data supplied is analysed using specific text passages of the aforementioned lexicographical text type. The results of this study not only help to evaluate the efficiency of this chatbot regarding the creation of dictionary articles, but also to delve deeper into the concept of intelligence, the thought processes and the actions to be carried out in both disciplines.
Related papers
- Differentiating between human-written and AI-generated texts using linguistic features automatically extracted from an online computational tool [0.0]
This study aims to investigate how various linguistic components are represented in both types of texts, assessing the ability of AI to emulate human writing.
Despite AI-generated texts appearing to mimic human speech, the results revealed significant differences across multiple linguistic features.
arXiv Detail & Related papers (2024-07-04T05:37:09Z) - Deep Learning Detection Method for Large Language Models-Generated
Scientific Content [0.0]
Large Language Models generate scientific content that is indistinguishable from that written by humans.
This research paper presents a novel ChatGPT-generated scientific text detection method, AI-Catcher.
On average, AI-Catcher improved accuracy by 37.4%.
arXiv Detail & Related papers (2024-02-27T19:16:39Z) - How many words does ChatGPT know? The answer is ChatWords [5.906689377130112]
evaluating the performance of ChatGPT and similar AI tools is a complex issue that is being explored from different perspectives.
We contribute to those efforts with ChatWords, an automated test system to evaluate ChatGPT knowledge of an arbitrary set of words.
Results show that ChatGPT is only able to recognize approximately 80% of the words in the dictionary and 90% of the words in the Quixote, in some cases with an incorrect meaning.
arXiv Detail & Related papers (2023-09-28T18:13:02Z) - Playing with Words: Comparing the Vocabulary and Lexical Richness of
ChatGPT and Humans [3.0059120458540383]
generative language models such as ChatGPT have triggered a revolution that can transform how text is generated.
Will the use of tools such as ChatGPT increase or reduce the vocabulary used or the lexical richness?
This has implications for words, as those not included in AI-generated content will tend to be less and less popular and may eventually be lost.
arXiv Detail & Related papers (2023-08-14T21:19:44Z) - Leveraging ChatGPT As Text Annotation Tool For Sentiment Analysis [6.596002578395151]
ChatGPT is a new product of OpenAI and has emerged as the most popular AI product.
This study explores the use of ChatGPT as a tool for data labeling for different sentiment analysis tasks.
arXiv Detail & Related papers (2023-06-18T12:20:42Z) - ChatGraph: Interpretable Text Classification by Converting ChatGPT
Knowledge to Graphs [54.48467003509595]
ChatGPT has shown superior performance in various natural language processing (NLP) tasks.
We propose a novel framework that leverages the power of ChatGPT for specific tasks, such as text classification.
Our method provides a more transparent decision-making process compared with previous text classification methods.
arXiv Detail & Related papers (2023-05-03T19:57:43Z) - ChatGPT Beyond English: Towards a Comprehensive Evaluation of Large
Language Models in Multilingual Learning [70.57126720079971]
Large language models (LLMs) have emerged as the most important breakthroughs in natural language processing (NLP)
This paper evaluates ChatGPT on 7 different tasks, covering 37 diverse languages with high, medium, low, and extremely low resources.
Compared to the performance of previous models, our extensive experimental results demonstrate a worse performance of ChatGPT for different NLP tasks and languages.
arXiv Detail & Related papers (2023-04-12T05:08:52Z) - Exploring the Use of Large Language Models for Reference-Free Text
Quality Evaluation: An Empirical Study [63.27346930921658]
ChatGPT is capable of evaluating text quality effectively from various perspectives without reference.
The Explicit Score, which utilizes ChatGPT to generate a numeric score measuring text quality, is the most effective and reliable method among the three exploited approaches.
arXiv Detail & Related papers (2023-04-03T05:29:58Z) - Open Vocabulary Electroencephalography-To-Text Decoding and Zero-shot
Sentiment Classification [78.120927891455]
State-of-the-art brain-to-text systems have achieved great success in decoding language directly from brain signals using neural networks.
In this paper, we extend the problem to open vocabulary Electroencephalography(EEG)-To-Text Sequence-To-Sequence decoding and zero-shot sentence sentiment classification on natural reading tasks.
Our model achieves a 40.1% BLEU-1 score on EEG-To-Text decoding and a 55.6% F1 score on zero-shot EEG-based ternary sentiment classification, which significantly outperforms supervised baselines.
arXiv Detail & Related papers (2021-12-05T21:57:22Z) - Leveraging Pre-trained Language Model for Speech Sentiment Analysis [58.78839114092951]
We explore the use of pre-trained language models to learn sentiment information of written texts for speech sentiment analysis.
We propose a pseudo label-based semi-supervised training strategy using a language model on an end-to-end speech sentiment approach.
arXiv Detail & Related papers (2021-06-11T20:15:21Z) - Improving Machine Reading Comprehension with Contextualized Commonsense
Knowledge [62.46091695615262]
We aim to extract commonsense knowledge to improve machine reading comprehension.
We propose to represent relations implicitly by situating structured knowledge in a context.
We employ a teacher-student paradigm to inject multiple types of contextualized knowledge into a student machine reader.
arXiv Detail & Related papers (2020-09-12T17:20:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.