Capacitive Touch Sensor Modeling With a Physics-informed Neural Network and Maxwell's Equations
- URL: http://arxiv.org/abs/2412.08650v1
- Date: Sat, 23 Nov 2024 11:22:24 GMT
- Title: Capacitive Touch Sensor Modeling With a Physics-informed Neural Network and Maxwell's Equations
- Authors: Ganyong Mo, Krishna Kumar Narayanan, David Castells-Rufas, Jordi Carrabina,
- Abstract summary: This paper introduces a novel approach using a Physics-Informed Neural Network (PINN) based surrogate model to accelerate the design process.
The PINN model solves the governing electrostatic equations describing the interaction between a finger and a capacitive sensor.
- Score: 0.0
- License:
- Abstract: Maxwell's equations are the fundamental equations for understanding electric and magnetic field interactions and play a crucial role in designing and optimizing sensor systems like capacitive touch sensors, which are widely prevalent in automotive switches and smartphones. Ensuring robust functionality and stability of the sensors in dynamic environments necessitates profound domain expertise and computationally intensive multi-physics simulations. This paper introduces a novel approach using a Physics-Informed Neural Network (PINN) based surrogate model to accelerate the design process. The PINN model solves the governing electrostatic equations describing the interaction between a finger and a capacitive sensor. Inputs include spatial coordinates from a 3D domain encompassing the finger, sensor, and PCB, along with finger distances. By incorporating the electrostatic equations directly into the neural network's loss function, the model captures the underlying physics. The learned model thus serves as a surrogate sensor model on which inference can be carried out in seconds for different experimental setups without the need to run simulations. Efficacy results evaluated on unseen test cases demonstrate the significant potential of PINNs in accelerating the development and design optimization of capacitive touch sensors.
Related papers
- Physics-informed neural networks need a physicist to be accurate: the case of mass and heat transport in Fischer-Tropsch catalyst particles [0.3926357402982764]
Physics-Informed Neural Networks (PINNs) have emerged as an influential technology, merging the swift and automated capabilities of machine learning with the precision and dependability of simulations grounded in theoretical physics.
However, wide adoption of PINNs is still hindered by reliability issues, particularly at extreme ends of the input parameter ranges.
We propose a domain knowledge-based modifications to the PINN architecture ensuring its correct behavior.
arXiv Detail & Related papers (2024-11-15T08:55:31Z) - Physics-Enhanced Graph Neural Networks For Soft Sensing in Industrial Internet of Things [6.374763930914524]
The Industrial Internet of Things (IIoT) is reshaping manufacturing, industrial processes, and infrastructure management.
achieving highly reliable IIoT can be hindered by factors such as the cost of installing large numbers of sensors, limitations in retrofitting existing systems with sensors, or harsh environmental conditions that may make sensor installation impractical.
We propose physics-enhanced Graph Neural Networks (GNNs), which integrate principles of physics into graph-based methodologies.
arXiv Detail & Related papers (2024-04-11T18:03:59Z) - Progress in artificial intelligence applications based on the
combination of self-driven sensors and deep learning [6.117706409613191]
Wang Zhong lin and his team invented the triboelectric nanogenerator (TENG), which uses Maxwell displacement current as a driving force to directly convert mechanical stimuli into electrical signals.
This paper is based on the intelligent sound monitoring and recognition system of TENG, which has good sound recognition capability.
arXiv Detail & Related papers (2024-01-30T08:53:54Z) - Inferring Relational Potentials in Interacting Systems [56.498417950856904]
We propose Neural Interaction Inference with Potentials (NIIP) as an alternative approach to discover such interactions.
NIIP assigns low energy to the subset of trajectories which respect the relational constraints observed.
It allows trajectory manipulation, such as interchanging interaction types across separately trained models, as well as trajectory forecasting.
arXiv Detail & Related papers (2023-10-23T00:44:17Z) - Neural Operators for Accelerating Scientific Simulations and Design [85.89660065887956]
An AI framework, known as Neural Operators, presents a principled framework for learning mappings between functions defined on continuous domains.
Neural Operators can augment or even replace existing simulators in many applications, such as computational fluid dynamics, weather forecasting, and material modeling.
arXiv Detail & Related papers (2023-09-27T00:12:07Z) - PDE Discovery for Soft Sensors Using Coupled Physics-Informed Neural
Network with Akaike's Information Criterion [0.9346127431927981]
Partial differential equations (PDEs) are candidates for soft sensors in industrial processes with model dependence.
Finding proper PDEs, including differential operators and source terms can remedy gaps.
CPINN-AIC is a data-driven method to discover proper PDE structures and neural network-based solutions for soft sensors.
arXiv Detail & Related papers (2023-08-11T13:39:21Z) - NeuralStagger: Accelerating Physics-constrained Neural PDE Solver with
Spatial-temporal Decomposition [67.46012350241969]
This paper proposes a general acceleration methodology called NeuralStagger.
It decomposing the original learning tasks into several coarser-resolution subtasks.
We demonstrate the successful application of NeuralStagger on 2D and 3D fluid dynamics simulations.
arXiv Detail & Related papers (2023-02-20T19:36:52Z) - Auto-PINN: Understanding and Optimizing Physics-Informed Neural
Architecture [77.59766598165551]
Physics-informed neural networks (PINNs) are revolutionizing science and engineering practice by bringing together the power of deep learning to bear on scientific computation.
Here, we propose Auto-PINN, which employs Neural Architecture Search (NAS) techniques to PINN design.
A comprehensive set of pre-experiments using standard PDE benchmarks allows us to probe the structure-performance relationship in PINNs.
arXiv Detail & Related papers (2022-05-27T03:24:31Z) - WaveY-Net: Physics-augmented deep learning for high-speed
electromagnetic simulation and optimization [0.0]
We introduce WaveY-Net, a hybrid data- and physics-augmented convolutional neural network that can predict electromagnetic field distributions with ultra fast speeds.
We show that the high speed simulator can be directly and effectively used in the local and global freeform optimization of metagratings.
arXiv Detail & Related papers (2022-03-02T17:11:33Z) - Elastic Tactile Simulation Towards Tactile-Visual Perception [58.44106915440858]
We propose Elastic Interaction of Particles (EIP) for tactile simulation.
EIP models the tactile sensor as a group of coordinated particles, and the elastic property is applied to regulate the deformation of particles during contact.
We further propose a tactile-visual perception network that enables information fusion between tactile data and visual images.
arXiv Detail & Related papers (2021-08-11T03:49:59Z) - Flexible Transmitter Network [84.90891046882213]
Current neural networks are mostly built upon the MP model, which usually formulates the neuron as executing an activation function on the real-valued weighted aggregation of signals received from other neurons.
We propose the Flexible Transmitter (FT) model, a novel bio-plausible neuron model with flexible synaptic plasticity.
We present the Flexible Transmitter Network (FTNet), which is built on the most common fully-connected feed-forward architecture.
arXiv Detail & Related papers (2020-04-08T06:55:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.