Emotional Vietnamese Speech-Based Depression Diagnosis Using Dynamic Attention Mechanism
- URL: http://arxiv.org/abs/2412.08683v1
- Date: Wed, 11 Dec 2024 18:52:39 GMT
- Title: Emotional Vietnamese Speech-Based Depression Diagnosis Using Dynamic Attention Mechanism
- Authors: Quang-Anh N. D., Manh-Hung Ha, Thai Kim Dinh, Minh-Duc Pham, Ninh Nguyen Van,
- Abstract summary: Major depressive disorder is a prevalent and serious mental health condition that negatively impacts your emotions, thoughts, actions, and overall perception of the world.
It is complicated to determine whether a person is depressed due to the symptoms of depression not apparent.
People who are depressed express discomfort, sadness and they may speak slowly, trembly, and lose emotion in their voices.
In this study, we proposed the Dynamic Convolutional Block Attention Module (Dynamic-CBAM) to utilize with in an Attention-GRU Network to classify the emotions by analyzing the audio signal of humans.
- Score: 0.0
- License:
- Abstract: Major depressive disorder is a prevalent and serious mental health condition that negatively impacts your emotions, thoughts, actions, and overall perception of the world. It is complicated to determine whether a person is depressed due to the symptoms of depression not apparent. However, their voice can be one of the factor from which we can acknowledge signs of depression. People who are depressed express discomfort, sadness and they may speak slowly, trembly, and lose emotion in their voices. In this study, we proposed the Dynamic Convolutional Block Attention Module (Dynamic-CBAM) to utilized with in an Attention-GRU Network to classify the emotions by analyzing the audio signal of humans. Based on the results, we can diagnose which patients are depressed or prone to depression then so that treatment and prevention can be started as soon as possible. The research delves into the intricate computational steps involved in implementing a Attention-GRU deep learning architecture. Through experimentation, the model has achieved an impressive recognition with Unweighted Accuracy (UA) rate of 0.87 and 0.86 Weighted Accuracy (WA) rate and F1 rate of 0.87 in the VNEMOS dataset. Training code is released in https://github.com/fiyud/Emotional-Vietnamese-Speech-Based-Depression-Diagnosis-Using-Dynamic-Attent ion-Mechanism
Related papers
- Decoding Emotion: Speech Perception Patterns in Individuals with Self-reported Depression [3.5047438945401717]
This study examines the relationship between self-reported depression and the perception of affective speech within the Indian population.
No significant differences between the depression and no-depression groups were observed for any of the emotional stimuli.
Significantly higher PANAS scores by the depression than the no-depression group indicate the impact of pre-disposed mood on the current mood status.
arXiv Detail & Related papers (2024-12-28T16:54:25Z) - MentalArena: Self-play Training of Language Models for Diagnosis and Treatment of Mental Health Disorders [59.515827458631975]
Mental health disorders are one of the most serious diseases in the world.
Privacy concerns limit the accessibility of personalized treatment data.
MentalArena is a self-play framework to train language models.
arXiv Detail & Related papers (2024-10-09T13:06:40Z) - MASON-NLP at eRisk 2023: Deep Learning-Based Detection of Depression
Symptoms from Social Media Texts [0.0]
Depression is a mental health disorder that has a profound impact on people's lives.
Recent research suggests that signs of depression can be detected in the way individuals communicate.
Social media posts are a rich and convenient text source that we may examine for depressive symptoms.
arXiv Detail & Related papers (2023-10-17T02:34:34Z) - The Relationship Between Speech Features Changes When You Get Depressed:
Feature Correlations for Improving Speed and Performance of Depression
Detection [69.88072583383085]
This work shows that depression changes the correlation between features extracted from speech.
Using such an insight can improve the training speed and performance of depression detectors based on SVMs and LSTMs.
arXiv Detail & Related papers (2023-07-06T09:54:35Z) - Depression detection in social media posts using affective and social
norm features [84.12658971655253]
We propose a deep architecture for depression detection from social media posts.
We incorporate profanity and morality features of posts and words in our architecture using a late fusion scheme.
The inclusion of the proposed features yields state-of-the-art results in both settings.
arXiv Detail & Related papers (2023-03-24T21:26:27Z) - Handwriting and Drawing for Depression Detection: A Preliminary Study [53.11777541341063]
Short-term covid effects on mental health were a significant increase in anxiety and depressive symptoms.
The aim of this study is to use a new tool, the online handwriting and drawing analysis, to discriminate between healthy individuals and depressed patients.
arXiv Detail & Related papers (2023-02-05T22:33:49Z) - Chatbots for Mental Health Support: Exploring the Impact of Emohaa on
Reducing Mental Distress in China [50.12173157902495]
The study included 134 participants, split into three groups: Emohaa (CBT-based), Emohaa (Full) and control.
Emohaa is a conversational agent that provides cognitive support through CBT-based exercises and guided conversations.
It also emotionally supports users by enabling them to vent their desired emotional problems.
arXiv Detail & Related papers (2022-09-21T08:23:40Z) - Automatic Depression Detection: An Emotional Audio-Textual Corpus and a
GRU/BiLSTM-based Model [17.83052349861756]
Depression is a global mental health problem, the worst case of which can lead to suicide.
We propose a novel depression detection approach utilizing speech characteristics and linguistic contents from participants' interviews.
We establish an Emotional Audio-Textual Depression Corpus (EATD-Corpus) which contains audios and extracted transcripts of responses from depressed and non-depressed volunteers.
arXiv Detail & Related papers (2022-02-15T03:29:39Z) - Deep Multi-task Learning for Depression Detection and Prediction in
Longitudinal Data [50.02223091927777]
Depression is among the most prevalent mental disorders, affecting millions of people of all ages globally.
Machine learning techniques have shown effective in enabling automated detection and prediction of depression for early intervention and treatment.
We introduce a novel deep multi-task recurrent neural network to tackle this challenge, in which depression classification is jointly optimized with two auxiliary tasks.
arXiv Detail & Related papers (2020-12-05T05:14:14Z) - Examining the Role of Mood Patterns in Predicting Self-Reported
Depressive symptoms [4.564132389935269]
Depression is the leading cause of disability worldwide.
Initial efforts to detect depression signals from social media posts have shown promising results.
In this work, we attempt to enrich current technology for detecting symptoms of potential depression by constructing a'mood profile' for social media users.
arXiv Detail & Related papers (2020-06-14T12:48:43Z) - Depressed individuals express more distorted thinking on social media [0.0]
Depression is a leading cause of disability worldwide, but is often under-diagnosed and under-treated.
Here, we show that individuals with a self-reported diagnosis of depression express higher levels of distorted thinking than a random sample.
Some types of distorted thinking were found to be more than twice as prevalent in our depressed cohort, in particular Personalizing and Emotional Reasoning.
arXiv Detail & Related papers (2020-02-07T14:18:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.