ProtoOcc: Accurate, Efficient 3D Occupancy Prediction Using Dual Branch Encoder-Prototype Query Decoder
- URL: http://arxiv.org/abs/2412.08774v2
- Date: Thu, 27 Feb 2025 11:57:16 GMT
- Title: ProtoOcc: Accurate, Efficient 3D Occupancy Prediction Using Dual Branch Encoder-Prototype Query Decoder
- Authors: Jungho Kim, Changwon Kang, Dongyoung Lee, Sehwan Choi, Jun Won Choi,
- Abstract summary: ProtoOcc is a novel 3D occupancy prediction model designed to predict the occupancy states and semantic classes of 3D voxels.<n>ProtoOcc achieves state-of-the-art performance with 45.02% mIoU on the Occ3D-nuScenes benchmark.
- Score: 8.494947115633682
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, we introduce ProtoOcc, a novel 3D occupancy prediction model designed to predict the occupancy states and semantic classes of 3D voxels through a deep semantic understanding of scenes. ProtoOcc consists of two main components: the Dual Branch Encoder (DBE) and the Prototype Query Decoder (PQD). The DBE produces a new 3D voxel representation by combining 3D voxel and BEV representations across multiple scales through a dual branch structure. This design enhances both performance and computational efficiency by providing a large receptive field for the BEV representation while maintaining a smaller receptive field for the voxel representation. The PQD introduces Prototype Queries to accelerate the decoding process. Scene-Adaptive Prototypes are derived from the 3D voxel features of input sample, while Scene-Agnostic Prototypes are computed by applying Scene-Adaptive Prototypes to an Exponential Moving Average during the training phase. By using these prototype-based queries for decoding, we can directly predict 3D occupancy in a single step, eliminating the need for iterative Transformer decoding. Additionally, we propose the Robust Prototype Learning, which injects noise into prototype generation process and trains the model to denoise during the training phase. ProtoOcc achieves state-of-the-art performance with 45.02% mIoU on the Occ3D-nuScenes benchmark. For single-frame method, it reaches 39.56% mIoU with an inference speed of 12.83 FPS on an NVIDIA RTX 3090. Our code can be found at https://github.com/SPA-junghokim/ProtoOcc.
Related papers
- WidthFormer: Toward Efficient Transformer-based BEV View Transformation [21.10523575080856]
WidthFormer is a transformer-based module to compute Bird's-Eye-View (BEV) representations from multi-view cameras for real-time autonomous-driving applications.
We first introduce a novel 3D positional encoding mechanism capable of accurately encapsulating 3D geometric information.
We then develop two modules to compensate for potential information loss due to feature compression.
arXiv Detail & Related papers (2024-01-08T11:50:23Z) - Triplane Meets Gaussian Splatting: Fast and Generalizable Single-View 3D
Reconstruction with Transformers [37.14235383028582]
We introduce a novel approach for single-view reconstruction that efficiently generates a 3D model from a single image via feed-forward inference.
Our method utilizes two transformer-based networks, namely a point decoder and a triplane decoder, to reconstruct 3D objects using a hybrid Triplane-Gaussian intermediate representation.
arXiv Detail & Related papers (2023-12-14T17:18:34Z) - Hourglass Tokenizer for Efficient Transformer-Based 3D Human Pose Estimation [73.31524865643709]
We present a plug-and-play pruning-and-recovering framework, called Hourglass Tokenizer (HoT), for efficient transformer-based 3D pose estimation from videos.
Our HoDT begins with pruning pose tokens of redundant frames and ends with recovering full-length tokens, resulting in a few pose tokens in the intermediate transformer blocks.
Our method can achieve both high efficiency and estimation accuracy compared to the original VPT models.
arXiv Detail & Related papers (2023-11-20T18:59:51Z) - PVT-SSD: Single-Stage 3D Object Detector with Point-Voxel Transformer [75.2251801053839]
We present a novel Point-Voxel Transformer for single-stage 3D detection (PVT-SSD)
We propose a Point-Voxel Transformer (PVT) module that obtains long-range contexts in a cheap manner from voxels.
The experiments on several autonomous driving benchmarks verify the effectiveness and efficiency of the proposed method.
arXiv Detail & Related papers (2023-05-11T07:37:15Z) - It Takes Two: Masked Appearance-Motion Modeling for Self-supervised
Video Transformer Pre-training [76.69480467101143]
Self-supervised video transformer pre-training has recently benefited from the mask-and-predict pipeline.
We explicitly investigate motion cues in videos as extra prediction target and propose our Masked Appearance-Motion Modeling framework.
Our method learns generalized video representations and achieves 82.3% on Kinects-400, 71.3% on Something-Something V2, 91.5% on UCF101, and 62.5% on HMDB51.
arXiv Detail & Related papers (2022-10-11T08:05:18Z) - Point-M2AE: Multi-scale Masked Autoencoders for Hierarchical Point Cloud
Pre-training [56.81809311892475]
Masked Autoencoders (MAE) have shown great potentials in self-supervised pre-training for language and 2D image transformers.
We propose Point-M2AE, a strong Multi-scale MAE pre-training framework for hierarchical self-supervised learning of 3D point clouds.
arXiv Detail & Related papers (2022-05-28T11:22:53Z) - P-STMO: Pre-Trained Spatial Temporal Many-to-One Model for 3D Human Pose
Estimation [78.83305967085413]
This paper introduces a novel Pre-trained Spatial Temporal Many-to-One (P-STMO) model for 2D-to-3D human pose estimation task.
Our method outperforms state-of-the-art methods with fewer parameters and less computational overhead.
arXiv Detail & Related papers (2022-03-15T04:00:59Z) - A Real-time Action Representation with Temporal Encoding and Deep
Compression [115.3739774920845]
We propose a new real-time convolutional architecture, called Temporal Convolutional 3D Network (T-C3D), for action representation.
T-C3D learns video action representations in a hierarchical multi-granularity manner while obtaining a high process speed.
Our method achieves clear improvements on UCF101 action recognition benchmark against state-of-the-art real-time methods by 5.4% in terms of accuracy and 2 times faster in terms of inference speed with a less than 5MB storage model.
arXiv Detail & Related papers (2020-06-17T06:30:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.